Skip to main content
Top
Published in: Journal of Materials Science 14/2020

07-02-2020 | Energy materials

Low-cost lignite-derived hard carbon for high-performance sodium-ion storage

Authors: Yujie Zou, Hang Li, Kaiyan Qin, Yang Xia, Lin Lin, Yanyuan Qi, Zelang Jian, Wen Chen

Published in: Journal of Materials Science | Issue 14/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sodium-ion batteries are regarded as the most promising alternative candidates for lithium-ion batteries. Hard carbon, as a kind of anode materials, has been demonstrated to deliver high specific capacity and stable cycling performance. However, it is still difficult to strike the balance between the relatively high cost and the superior electrochemical performance. We successfully fabricated low-cost lignite-derived hard carbons (a-LCs) with easy scale-up method. The microstructure, morphology and surface information of the obtained a-LCs are evaluated by X-ray diffraction, Raman spectrum and Fourier transform infrared spectrometer. By changing carbonization temperature, a-LCs’ microstructure and defect composition can be tuned and quite different sodium-ion storage behaviors can be seen. When carbonization temperature increases, the carbon microcrystallites grow and defects decay, resulting in a decrease in defect absorption capacity and an increase in graphitic-like nanodomain intercalation capacity. Particularly, a-LC carbonized at 1200 °C (a-LC-1200) can deliver a high capacity of 256 mAh g−1 with the initial Coulombic efficiency of 82%. Besides, it also exhibits a superior rate performance of 210, 197, 180, 168 and 146 mAh g−1 at current rates of 1, 2, 5, 10 and 20C (defined that 1C = 200 mA g−1), respectively. It solves the above problems very well and displays great commercial value.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3395CrossRef Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3395CrossRef
2.
go back to reference Li Y, Lu Y, Zhao C, Hu YS, Titirici MM, Li H, Huang X, Chen L (2017) Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater 7:130–151CrossRef Li Y, Lu Y, Zhao C, Hu YS, Titirici MM, Li H, Huang X, Chen L (2017) Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater 7:130–151CrossRef
4.
go back to reference Eftekhari A, Jian ZL, Ji XL (2017) Potassium secondary batteries. ACS Appl Mater Interfaces 9:4404–4419CrossRef Eftekhari A, Jian ZL, Ji XL (2017) Potassium secondary batteries. ACS Appl Mater Interfaces 9:4404–4419CrossRef
5.
go back to reference Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRef Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRef
8.
go back to reference Guo SP, Li JC, Xu QT, Ma Z, Xue HG (2017) Recent achievements on polyanion-type compounds for sodium-ion batteries: syntheses, crystal chemistry and electrochemical performance. J Power Sources 361:285–299CrossRef Guo SP, Li JC, Xu QT, Ma Z, Xue HG (2017) Recent achievements on polyanion-type compounds for sodium-ion batteries: syntheses, crystal chemistry and electrochemical performance. J Power Sources 361:285–299CrossRef
9.
go back to reference Fouletier PGM (1988) Electrochemical intercalation of sodium in graphite. Solid State lon 28:1172–1175 Fouletier PGM (1988) Electrochemical intercalation of sodium in graphite. Solid State lon 28:1172–1175
10.
go back to reference Luo W, Jian ZL, Xing ZY, Wang W, Bommier C, Lerner MM, Ji XL (2015) Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent Sci 1:516–522CrossRef Luo W, Jian ZL, Xing ZY, Wang W, Bommier C, Lerner MM, Ji XL (2015) Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent Sci 1:516–522CrossRef
11.
go back to reference Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, Wang W, Engelhard MH, Nie Z, Liu J (2016) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288CrossRef Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, Wang W, Engelhard MH, Nie Z, Liu J (2016) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288CrossRef
12.
go back to reference Zhang HW, Hu MX, Lv Q, Yang L, Lv RT (2019) Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. Electrochim Acta 297:365–371CrossRef Zhang HW, Hu MX, Lv Q, Yang L, Lv RT (2019) Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. Electrochim Acta 297:365–371CrossRef
13.
go back to reference Li ZF, Jian ZL, Wang XF, Rodriguez-Perez IA, Bommier C, Ji XL (2017) Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem Commun 53:2610–2613CrossRef Li ZF, Jian ZL, Wang XF, Rodriguez-Perez IA, Bommier C, Ji XL (2017) Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem Commun 53:2610–2613CrossRef
14.
go back to reference Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim JM, Komaba S (2018) Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J Mater Chem A 6:16844–16848CrossRef Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim JM, Komaba S (2018) Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J Mater Chem A 6:16844–16848CrossRef
15.
go back to reference Liu RF, Li YL, Wang CL, Xiao N, He L, Guo HY, Wan P, Zhou Y, Qiu JS (2018) Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Process Technol 178:35–40CrossRef Liu RF, Li YL, Wang CL, Xiao N, He L, Guo HY, Wan P, Zhou Y, Qiu JS (2018) Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Process Technol 178:35–40CrossRef
16.
go back to reference Zhang YJ, Li X, Dong P, Wu G, Xiao J, Zeng XY, Zhang YJ, Sun XL (2018) Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion battery. ACS Appl Mater Interfaces 10:42796–42803CrossRef Zhang YJ, Li X, Dong P, Wu G, Xiao J, Zeng XY, Zhang YJ, Sun XL (2018) Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion battery. ACS Appl Mater Interfaces 10:42796–42803CrossRef
17.
go back to reference Luo W, Bommier C, Jian ZL, Li X, Carter R, Vail S, Lu Y, Lee JJ, Ji XL (2015) Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces 7:2626–2631CrossRef Luo W, Bommier C, Jian ZL, Li X, Carter R, Vail S, Lu Y, Lee JJ, Ji XL (2015) Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces 7:2626–2631CrossRef
19.
go back to reference Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef
20.
go back to reference Zhuang ZH, Cui YL, Zhu HG, Shi YL, Zhuang QC (2018) Coal-based amorphous carbon as economical anode material for sodium-ion battery. J Electrochem Soc 165:A2225–A2232CrossRef Zhuang ZH, Cui YL, Zhu HG, Shi YL, Zhuang QC (2018) Coal-based amorphous carbon as economical anode material for sodium-ion battery. J Electrochem Soc 165:A2225–A2232CrossRef
21.
go back to reference Zhu ZY, Li F, Zhou ZR, Zeng XY, Wang D, Dong P, Zhao JB, Sun SG, Zhang YJ, Li X (2018) Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries. J Mater Chem A 6:1513–1522CrossRef Zhu ZY, Li F, Zhou ZR, Zeng XY, Wang D, Dong P, Zhao JB, Sun SG, Zhang YJ, Li X (2018) Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries. J Mater Chem A 6:1513–1522CrossRef
22.
go back to reference Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef
23.
go back to reference Xi YB, Yang DJ, Qiu XQ, Wang H, Huang JH, Li Q (2018) Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Ind Crop Prod 124:747–754CrossRef Xi YB, Yang DJ, Qiu XQ, Wang H, Huang JH, Li Q (2018) Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Ind Crop Prod 124:747–754CrossRef
26.
go back to reference Qiu S, Xiao LF, Sushko ML, Han KS, Shao YY, Yan MY, Liang XM, Mai LQ, Feng JW, Cao YL, Ai XP, Yang HX, Liu J (2017) Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater 7:1700403. https://doi.org/10.1002/aenm.201700403 CrossRef Qiu S, Xiao LF, Sushko ML, Han KS, Shao YY, Yan MY, Liang XM, Mai LQ, Feng JW, Cao YL, Ai XP, Yang HX, Liu J (2017) Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater 7:1700403. https://​doi.​org/​10.​1002/​aenm.​201700403 CrossRef
Metadata
Title
Low-cost lignite-derived hard carbon for high-performance sodium-ion storage
Authors
Yujie Zou
Hang Li
Kaiyan Qin
Yang Xia
Lin Lin
Yanyuan Qi
Zelang Jian
Wen Chen
Publication date
07-02-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 14/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04420-0

Other articles of this Issue 14/2020

Journal of Materials Science 14/2020 Go to the issue

Premium Partners