Skip to main content
Erschienen in: Journal of Materials Science 14/2020

07.02.2020 | Energy materials

Low-cost lignite-derived hard carbon for high-performance sodium-ion storage

verfasst von: Yujie Zou, Hang Li, Kaiyan Qin, Yang Xia, Lin Lin, Yanyuan Qi, Zelang Jian, Wen Chen

Erschienen in: Journal of Materials Science | Ausgabe 14/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sodium-ion batteries are regarded as the most promising alternative candidates for lithium-ion batteries. Hard carbon, as a kind of anode materials, has been demonstrated to deliver high specific capacity and stable cycling performance. However, it is still difficult to strike the balance between the relatively high cost and the superior electrochemical performance. We successfully fabricated low-cost lignite-derived hard carbons (a-LCs) with easy scale-up method. The microstructure, morphology and surface information of the obtained a-LCs are evaluated by X-ray diffraction, Raman spectrum and Fourier transform infrared spectrometer. By changing carbonization temperature, a-LCs’ microstructure and defect composition can be tuned and quite different sodium-ion storage behaviors can be seen. When carbonization temperature increases, the carbon microcrystallites grow and defects decay, resulting in a decrease in defect absorption capacity and an increase in graphitic-like nanodomain intercalation capacity. Particularly, a-LC carbonized at 1200 °C (a-LC-1200) can deliver a high capacity of 256 mAh g−1 with the initial Coulombic efficiency of 82%. Besides, it also exhibits a superior rate performance of 210, 197, 180, 168 and 146 mAh g−1 at current rates of 1, 2, 5, 10 and 20C (defined that 1C = 200 mA g−1), respectively. It solves the above problems very well and displays great commercial value.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3395CrossRef Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3395CrossRef
2.
Zurück zum Zitat Li Y, Lu Y, Zhao C, Hu YS, Titirici MM, Li H, Huang X, Chen L (2017) Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater 7:130–151CrossRef Li Y, Lu Y, Zhao C, Hu YS, Titirici MM, Li H, Huang X, Chen L (2017) Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater 7:130–151CrossRef
4.
Zurück zum Zitat Eftekhari A, Jian ZL, Ji XL (2017) Potassium secondary batteries. ACS Appl Mater Interfaces 9:4404–4419CrossRef Eftekhari A, Jian ZL, Ji XL (2017) Potassium secondary batteries. ACS Appl Mater Interfaces 9:4404–4419CrossRef
5.
Zurück zum Zitat Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRef Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRef
8.
Zurück zum Zitat Guo SP, Li JC, Xu QT, Ma Z, Xue HG (2017) Recent achievements on polyanion-type compounds for sodium-ion batteries: syntheses, crystal chemistry and electrochemical performance. J Power Sources 361:285–299CrossRef Guo SP, Li JC, Xu QT, Ma Z, Xue HG (2017) Recent achievements on polyanion-type compounds for sodium-ion batteries: syntheses, crystal chemistry and electrochemical performance. J Power Sources 361:285–299CrossRef
9.
Zurück zum Zitat Fouletier PGM (1988) Electrochemical intercalation of sodium in graphite. Solid State lon 28:1172–1175 Fouletier PGM (1988) Electrochemical intercalation of sodium in graphite. Solid State lon 28:1172–1175
10.
Zurück zum Zitat Luo W, Jian ZL, Xing ZY, Wang W, Bommier C, Lerner MM, Ji XL (2015) Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent Sci 1:516–522CrossRef Luo W, Jian ZL, Xing ZY, Wang W, Bommier C, Lerner MM, Ji XL (2015) Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent Sci 1:516–522CrossRef
11.
Zurück zum Zitat Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, Wang W, Engelhard MH, Nie Z, Liu J (2016) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288CrossRef Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, Wang W, Engelhard MH, Nie Z, Liu J (2016) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288CrossRef
12.
Zurück zum Zitat Zhang HW, Hu MX, Lv Q, Yang L, Lv RT (2019) Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. Electrochim Acta 297:365–371CrossRef Zhang HW, Hu MX, Lv Q, Yang L, Lv RT (2019) Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. Electrochim Acta 297:365–371CrossRef
13.
Zurück zum Zitat Li ZF, Jian ZL, Wang XF, Rodriguez-Perez IA, Bommier C, Ji XL (2017) Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem Commun 53:2610–2613CrossRef Li ZF, Jian ZL, Wang XF, Rodriguez-Perez IA, Bommier C, Ji XL (2017) Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem Commun 53:2610–2613CrossRef
14.
Zurück zum Zitat Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim JM, Komaba S (2018) Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J Mater Chem A 6:16844–16848CrossRef Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim JM, Komaba S (2018) Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J Mater Chem A 6:16844–16848CrossRef
15.
Zurück zum Zitat Liu RF, Li YL, Wang CL, Xiao N, He L, Guo HY, Wan P, Zhou Y, Qiu JS (2018) Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Process Technol 178:35–40CrossRef Liu RF, Li YL, Wang CL, Xiao N, He L, Guo HY, Wan P, Zhou Y, Qiu JS (2018) Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Process Technol 178:35–40CrossRef
16.
Zurück zum Zitat Zhang YJ, Li X, Dong P, Wu G, Xiao J, Zeng XY, Zhang YJ, Sun XL (2018) Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion battery. ACS Appl Mater Interfaces 10:42796–42803CrossRef Zhang YJ, Li X, Dong P, Wu G, Xiao J, Zeng XY, Zhang YJ, Sun XL (2018) Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion battery. ACS Appl Mater Interfaces 10:42796–42803CrossRef
17.
Zurück zum Zitat Luo W, Bommier C, Jian ZL, Li X, Carter R, Vail S, Lu Y, Lee JJ, Ji XL (2015) Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces 7:2626–2631CrossRef Luo W, Bommier C, Jian ZL, Li X, Carter R, Vail S, Lu Y, Lee JJ, Ji XL (2015) Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl Mater Interfaces 7:2626–2631CrossRef
19.
Zurück zum Zitat Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef
20.
Zurück zum Zitat Zhuang ZH, Cui YL, Zhu HG, Shi YL, Zhuang QC (2018) Coal-based amorphous carbon as economical anode material for sodium-ion battery. J Electrochem Soc 165:A2225–A2232CrossRef Zhuang ZH, Cui YL, Zhu HG, Shi YL, Zhuang QC (2018) Coal-based amorphous carbon as economical anode material for sodium-ion battery. J Electrochem Soc 165:A2225–A2232CrossRef
21.
Zurück zum Zitat Zhu ZY, Li F, Zhou ZR, Zeng XY, Wang D, Dong P, Zhao JB, Sun SG, Zhang YJ, Li X (2018) Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries. J Mater Chem A 6:1513–1522CrossRef Zhu ZY, Li F, Zhou ZR, Zeng XY, Wang D, Dong P, Zhao JB, Sun SG, Zhang YJ, Li X (2018) Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries. J Mater Chem A 6:1513–1522CrossRef
22.
Zurück zum Zitat Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef
23.
Zurück zum Zitat Xi YB, Yang DJ, Qiu XQ, Wang H, Huang JH, Li Q (2018) Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Ind Crop Prod 124:747–754CrossRef Xi YB, Yang DJ, Qiu XQ, Wang H, Huang JH, Li Q (2018) Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Ind Crop Prod 124:747–754CrossRef
26.
Zurück zum Zitat Qiu S, Xiao LF, Sushko ML, Han KS, Shao YY, Yan MY, Liang XM, Mai LQ, Feng JW, Cao YL, Ai XP, Yang HX, Liu J (2017) Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater 7:1700403. https://doi.org/10.1002/aenm.201700403 CrossRef Qiu S, Xiao LF, Sushko ML, Han KS, Shao YY, Yan MY, Liang XM, Mai LQ, Feng JW, Cao YL, Ai XP, Yang HX, Liu J (2017) Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater 7:1700403. https://​doi.​org/​10.​1002/​aenm.​201700403 CrossRef
Metadaten
Titel
Low-cost lignite-derived hard carbon for high-performance sodium-ion storage
verfasst von
Yujie Zou
Hang Li
Kaiyan Qin
Yang Xia
Lin Lin
Yanyuan Qi
Zelang Jian
Wen Chen
Publikationsdatum
07.02.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04420-0

Weitere Artikel der Ausgabe 14/2020

Journal of Materials Science 14/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.