Skip to main content
Top
Published in: Microsystem Technologies 6/2015

01-06-2015 | Technical Paper

Low temperature carbon nanotube and hexagonal diamond deposition with photo-enhanced chemical vapor deposition

Authors: KyungNam Kang, Jeonghwan Kim, Yoonyoung Jin, Pratul K. Ajmera

Published in: Microsystem Technologies | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deposition of carbon nanotube and hexagonal diamond thin films at low substrate temperature with photo-enhanced chemical vapor deposition is described here. Extensive experimentation is conducted to optimize the catalyst layer utilized for deposition by varying Al/Ni/Al metal layer thicknesses on SiO2 coated Si substrates. The coated substrates are annealed to transform the thin metal layers into nanoparticles. Suitable catalyst layer thicknesses obtained are 3/2/3, 5/1/5 and 5/3/5 nm for Al/Ni/Al sandwich metal layers. Suitable annealing conditions are in the range of 350–450 °C for substrate temperature and from 0.22 to 10 Torr for chamber pressure in ammonia ambient for 25 min. Carbon tetrachloride (CCl4) is used as a carbon precursor in this work. Argon to CCl4 flow ratio is varied in 1.5–19 range, chamber pressure is varied in 3–10 Torr range, and the substrate temperature is varied in 350–450 °C range. Carbon nanotubes (CNT) growth is observed at lower chamber pressure, lower partial pressure of CCl4, lower substrate temperature and for thin Ni catalyst layer. The optimal CNT deposition condition observed is 5 Torr total chamber pressure, 9:1 partial pressure ratio of Ar to CCl4, 400 °C substrate temperature and 5/1/5 nm thick Al/Ni/Al catalyst layers. The hexagonal diamond deposition is observed at a higher chamber pressure, higher partial pressure of CCl4, higher substrate temperature and for a thicker Ni catalyst layer. The optimal condition for hexagonal diamond deposition observed is 10 Torr total chamber pressure, 7:3 partial pressure ratio of Ar to CCl4, 450 °C substrate temperature and 5/3/5 nm thick Al/Ni/Al catalyst sandwich layers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amornkitbamrung V, Burinprakhone T, Jarernboon W (2009) Hexagonal diamond formation on steel substrates by negative bias microwave plasma enhanced chemical vapor deposition. Surf Coat Tech 203:1645CrossRef Amornkitbamrung V, Burinprakhone T, Jarernboon W (2009) Hexagonal diamond formation on steel substrates by negative bias microwave plasma enhanced chemical vapor deposition. Surf Coat Tech 203:1645CrossRef
go back to reference Bundy FP, Kasper JS (1967) Hexagonal diamond, a new form of carbon. J Chem Phys 46:3437CrossRef Bundy FP, Kasper JS (1967) Hexagonal diamond, a new form of carbon. J Chem Phys 46:3437CrossRef
go back to reference Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari AC, Blackburn AM, Wang K-Y, Robertson J (2006) Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Lett 6:1107CrossRef Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari AC, Blackburn AM, Wang K-Y, Robertson J (2006) Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Lett 6:1107CrossRef
go back to reference Delzeit L, Chen B, Cassell A, Stevens R, Nguyen C, Meyyappan M (2001) Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth. Chem Phys Lett 348:368CrossRef Delzeit L, Chen B, Cassell A, Stevens R, Nguyen C, Meyyappan M (2001) Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth. Chem Phys Lett 348:368CrossRef
go back to reference Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49CrossRef Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49CrossRef
go back to reference He H, Sekine T, Kobayashi T (2002) Direct transformation of cubic diamond to hexagonal diamond. Appl Phys Lett 81:610CrossRef He H, Sekine T, Kobayashi T (2002) Direct transformation of cubic diamond to hexagonal diamond. Appl Phys Lett 81:610CrossRef
go back to reference Jang Y-T, Ahn J-H, Lee Y-H, Ju B-K (2003) Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett 372:745CrossRef Jang Y-T, Ahn J-H, Lee Y-H, Ju B-K (2003) Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett 372:745CrossRef
go back to reference Kang K, Jin Y, Kim J, Ajmera PK (2012) Study on low formation mechanism of hexagonal diamond. Diam Relat Mater 27–28:76CrossRef Kang K, Jin Y, Kim J, Ajmera PK (2012) Study on low formation mechanism of hexagonal diamond. Diam Relat Mater 27–28:76CrossRef
go back to reference Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M (2011) Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat Mater 10:693CrossRef Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M (2011) Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat Mater 10:693CrossRef
go back to reference Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97:041301CrossRef Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97:041301CrossRef
go back to reference Misra A, Tyagi PK, Yadav BS, Rai P, Misra DS, Pancholi V, Samajdar ID (2006) Hexagonal diamond synthesis on h-GaN strained films. Appl Phys Lett 89:071911CrossRef Misra A, Tyagi PK, Yadav BS, Rai P, Misra DS, Pancholi V, Samajdar ID (2006) Hexagonal diamond synthesis on h-GaN strained films. Appl Phys Lett 89:071911CrossRef
go back to reference Norton DP, Ajmera PK (1988) Spatially selective photochemical vapor deposition of GaAs on synthetic fused silica. Appl Phys Lett 53:595CrossRef Norton DP, Ajmera PK (1988) Spatially selective photochemical vapor deposition of GaAs on synthetic fused silica. Appl Phys Lett 53:595CrossRef
go back to reference Souza AC, Srivastava S (1994) Photoabsorption cross sections of Ar, N2 and Si (CH3)4 derived from electron energy loss spectroscopy. J Braz Chem Soc 5:59CrossRef Souza AC, Srivastava S (1994) Photoabsorption cross sections of Ar, N2 and Si (CH3)4 derived from electron energy loss spectroscopy. J Braz Chem Soc 5:59CrossRef
go back to reference Trueb LF (1968) An electron microscope study of shock synthesized diamond. J Appl Phys 39:4707CrossRef Trueb LF (1968) An electron microscope study of shock synthesized diamond. J Appl Phys 39:4707CrossRef
go back to reference Wang C-X, Yang Y-H, Liu Q-X, Yang G-W, Mao Y-L, Yan X-H (2004) Phase stability of diamond nanocrystals upon pulsed-laser-induced liquid–solid interfacial reaction: experiments and ab initio calculations. Appl Phys Lett 84:1471CrossRef Wang C-X, Yang Y-H, Liu Q-X, Yang G-W, Mao Y-L, Yan X-H (2004) Phase stability of diamond nanocrystals upon pulsed-laser-induced liquid–solid interfacial reaction: experiments and ab initio calculations. Appl Phys Lett 84:1471CrossRef
go back to reference Wei S, Kang WP, Davidson JL, Huang JH (2006) Aligned carbon nanotubes fabricated by thermal CVD at atmospheric pressure using Co as catalyst with NH3 as reactive gas. Diam Relat Mater 15:1828CrossRef Wei S, Kang WP, Davidson JL, Huang JH (2006) Aligned carbon nanotubes fabricated by thermal CVD at atmospheric pressure using Co as catalyst with NH3 as reactive gas. Diam Relat Mater 15:1828CrossRef
Metadata
Title
Low temperature carbon nanotube and hexagonal diamond deposition with photo-enhanced chemical vapor deposition
Authors
KyungNam Kang
Jeonghwan Kim
Yoonyoung Jin
Pratul K. Ajmera
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 6/2015
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2163-2

Other articles of this Issue 6/2015

Microsystem Technologies 6/2015 Go to the issue