Skip to main content
Top
Published in: Quantum Information Processing 1/2019

01-01-2019

LSBs-based quantum color images watermarking algorithm in edge region

Authors: WenWen Hu, Ri-Gui Zhou, Jia Luo, BiYing Liu

Published in: Quantum Information Processing | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on the NEQR representation for quantum color and binary images, an enhanced quantum watermarking scheme is investigated through Gray code transform and least significant bit (LSB) steganography, which embeds a quantum binary image (i.e., watermark image) into the edge region of a quantum color image (i.e., carrier image) LSB and second LSB. The size of the carrier and watermark images are assumed to be \( 2^{n} \times 2^{n} \) and \( 2^{n - 1} \times 2^{n - 1} \), respectively. At first, the watermark image is resized into an appropriate size image with 4-qubit grayscale based on the nearest neighbor interpolation method, which is of the same size with the preselected edge region in carrier image. To enhance the security of the watermark image, the binary code of 4-qubit grayscale of watermark image is transformed into the corresponding Gray code, and one 3-Controlled-NOT gate is utilized to generate a quantum binary image \( \left| {K1} \right\rangle \). To further scatter the watermark image qubits that are embedded into the LSB and second LSB of carrier image, the quantum image \( \left| {K1} \right\rangle \) is employed to choose any two channels from the color image among the three channels of R, G and B (i.e., R, G or R, B channels would be chosen as the embedding channels). Furthermore, a quantum binary image \( \left| {K2} \right\rangle \) is generated through XOR operation decided by the quantum image \( \left| {K1} \right\rangle \), which is used to determine the embedding order of watermark image qubits. The extraction process is the inverse operation of embedding, which also needs the two quantum binary key images \( \left| {K1} \right\rangle \) and \( \left| {K2} \right\rangle \). Finally, the experiment results are simulated under the classical computer software MATLAB 2016(b), which illustrates that our investigated LSBs-based quantum watermarking has a better visual effect than some related works in terms of PSNR value.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15, 1730001 (2017)MathSciNetCrossRef Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15, 1730001 (2017)MathSciNetCrossRef
3.
go back to reference Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016)ADSMathSciNetCrossRef Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016)ADSMathSciNetCrossRef
4.
go back to reference Venegas-Andraca S.E., Bose S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, vol. 5105, pp. 134–147 (2003) Venegas-Andraca S.E., Bose S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, vol. 5105, pp. 134–147 (2003)
6.
go back to reference Le, P., Dong, F., Hitora, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)MathSciNetCrossRef Le, P., Dong, F., Hitora, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)MathSciNetCrossRef
7.
go back to reference Sun, B., Iliyasu, A., Yan, F., et al.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17, 404–417 (2013)CrossRef Sun, B., Iliyasu, A., Yan, F., et al.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17, 404–417 (2013)CrossRef
8.
go back to reference Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)ADSMathSciNetCrossRef Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)ADSMathSciNetCrossRef
9.
go back to reference Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12, 3103–3126 (2013)ADSMathSciNetCrossRef Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12, 3103–3126 (2013)ADSMathSciNetCrossRef
10.
go back to reference Yuan, S.Z., Mao, X., Xue, Y.L., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13, 1353–1379 (2014)ADSMathSciNetCrossRef Yuan, S.Z., Mao, X., Xue, Y.L., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13, 1353–1379 (2014)ADSMathSciNetCrossRef
11.
go back to reference Abdolmaleky, M., et al.: Red–Green–Blue multi-channel quantum representation of digital images. Opt. Int. J. Light Electron Opt. 128, 121–132 (2017)CrossRef Abdolmaleky, M., et al.: Red–Green–Blue multi-channel quantum representation of digital images. Opt. Int. J. Light Electron Opt. 128, 121–132 (2017)CrossRef
12.
15.
go back to reference Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13, 1223–1236 (2014)ADSMathSciNetCrossRef Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13, 1223–1236 (2014)ADSMathSciNetCrossRef
16.
go back to reference Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53, 2463–2484 (2014)CrossRef Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53, 2463–2484 (2014)CrossRef
17.
18.
19.
go back to reference Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12, 2765–2769 (2013)ADSMathSciNetCrossRef Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12, 2765–2769 (2013)ADSMathSciNetCrossRef
20.
go back to reference Yang, Y.G., Xu, P., Ju, T.J., Zhang, H.: Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 13, 1931–1936 (2014)ADSMathSciNetCrossRef Yang, Y.G., Xu, P., Ju, T.J., Zhang, H.: Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 13, 1931–1936 (2014)ADSMathSciNetCrossRef
21.
go back to reference Yang, Y.G., Wang, Y., Zhao, Q.Q.: Letter to the Editor regarding “Dynamic watermarking scheme for quantum images based on Hadamard transform” by Song et al. Multimed. Syst. 22, 271–272 (2016)CrossRef Yang, Y.G., Wang, Y., Zhao, Q.Q.: Letter to the Editor regarding “Dynamic watermarking scheme for quantum images based on Hadamard transform” by Song et al. Multimed. Syst. 22, 271–272 (2016)CrossRef
22.
go back to reference Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moir pattern. Int. J. Theor. Phys. 54, 1021–1032 (2015)CrossRef Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moir pattern. Int. J. Theor. Phys. 54, 1021–1032 (2015)CrossRef
23.
go back to reference Wang, S., et al.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)CrossRef Wang, S., et al.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)CrossRef
24.
go back to reference Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2016)CrossRef Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2016)CrossRef
25.
go back to reference Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15, 1849–1864 (2016)ADSMathSciNetCrossRef Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15, 1849–1864 (2016)ADSMathSciNetCrossRef
26.
go back to reference Heidari, S., Naseri, M.: A novel LSB based quantum image watermarking. Int. J. Theor. Phys. 55, 4205–4218 (2016)CrossRef Heidari, S., Naseri, M.: A novel LSB based quantum image watermarking. Int. J. Theor. Phys. 55, 4205–4218 (2016)CrossRef
27.
28.
go back to reference Li, P.C., Zhao, Y., Xiao, H., Cao, M.J.: An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling. Quantum Inf. Process. 16, 127 (2017)ADSCrossRef Li, P.C., Zhao, Y., Xiao, H., Cao, M.J.: An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling. Quantum Inf. Process. 16, 127 (2017)ADSCrossRef
29.
go back to reference Naseri, M., Heidari, S., et al.: A new secure quantum watermarking scheme. Opt. Int. J. Light Electron Opt. 139, 77–86 (2017)CrossRef Naseri, M., Heidari, S., et al.: A new secure quantum watermarking scheme. Opt. Int. J. Light Electron Opt. 139, 77–86 (2017)CrossRef
30.
go back to reference Zhou, R.G., Hu, W.W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 212 (2017)ADSMathSciNetCrossRef Zhou, R.G., Hu, W.W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 212 (2017)ADSMathSciNetCrossRef
31.
go back to reference Heidari, S., Pourarian, M.R., Gheibi, R., et al.: Quantum red–green–blue image steganography. Int. J. Quantum Inf. 15(7), 1750039 (2017)MathSciNetCrossRef Heidari, S., Pourarian, M.R., Gheibi, R., et al.: Quantum red–green–blue image steganography. Int. J. Quantum Inf. 15(7), 1750039 (2017)MathSciNetCrossRef
32.
go back to reference Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16, 242 (2017)ADSMathSciNetCrossRef Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16, 242 (2017)ADSMathSciNetCrossRef
33.
go back to reference Zhou, R.G., Luo, J., Liu, X.A., et al.: A novel quantum image steganography scheme based on LSB. Int. J. Theor. Phys. 57, 1–16 (2018)MathSciNetCrossRef Zhou, R.G., Luo, J., Liu, X.A., et al.: A novel quantum image steganography scheme based on LSB. Int. J. Theor. Phys. 57, 1–16 (2018)MathSciNetCrossRef
34.
go back to reference Li, P.C., Liu, X.D.: A novel quantum steganography scheme for color images. Int. J. Quantum Inf. 16(9), 1850020 (2018)CrossRef Li, P.C., Liu, X.D.: A novel quantum steganography scheme for color images. Int. J. Quantum Inf. 16(9), 1850020 (2018)CrossRef
36.
37.
go back to reference Tirkel A.Z., Rankin G.A., VanSchyndel R.M., et al.: Electronic watermark. In: Proceedings of Digital Image Computing: Techniques and Applications, pp. 666–672. Macquarie University (1993) Tirkel A.Z., Rankin G.A., VanSchyndel R.M., et al.: Electronic watermark. In: Proceedings of Digital Image Computing: Techniques and Applications, pp. 666–672. Macquarie University (1993)
38.
go back to reference Gray, F.: Pulse code communication. United States patent 2632058, Mar 1953 Gray, F.: Pulse code communication. United States patent 2632058, Mar 1953
39.
go back to reference Barenco, A., Bennett, C.H., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3488 (1995)ADSCrossRef Barenco, A., Bennett, C.H., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3488 (1995)ADSCrossRef
40.
go back to reference Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Metadata
Title
LSBs-based quantum color images watermarking algorithm in edge region
Authors
WenWen Hu
Ri-Gui Zhou
Jia Luo
BiYing Liu
Publication date
01-01-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 1/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-2138-9

Other articles of this Issue 1/2019

Quantum Information Processing 1/2019 Go to the issue