Skip to main content
Top
Published in: Journal of Materials Science 9/2018

12-01-2018 | Computation

Machine learning properties of binary wurtzite superlattices

Authors: G. Pilania, X.-Y. Liu

Published in: Journal of Materials Science | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present contribution, we show that fast and accurate predictions of a wide range of properties of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. While the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Agrawal A, Choudhary A (2016) Materials informatics and big data: realization of the ‘fourth paradigm’ of science in materials science. APL Mater 4:53208 Agrawal A, Choudhary A (2016) Materials informatics and big data: realization of the ‘fourth paradigm’ of science in materials science. APL Mater 4:53208
3.
go back to reference Curtarolo S et al (2013) The high-throughput highway to computational materials design. Nat Mater 12:191 Curtarolo S et al (2013) The high-throughput highway to computational materials design. Nat Mater 12:191
4.
go back to reference Jain A, Hautier G, Ong SP, Persson K (2016) New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships. J Mater Res 31:977–994 Jain A, Hautier G, Ong SP, Persson K (2016) New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships. J Mater Res 31:977–994
5.
go back to reference Rajan K (2005) Materials informatics. Mater Today 8:38 Rajan K (2005) Materials informatics. Mater Today 8:38
6.
go back to reference LeSar R (2009) Materials informatics: an emerging technology for materials development. Stat Anal Data Min 1:372 LeSar R (2009) Materials informatics: an emerging technology for materials development. Stat Anal Data Min 1:372
7.
go back to reference Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning and materials informatics: recent applications and prospects. ArXiv Prepr arXiv:170707294 Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning and materials informatics: recent applications and prospects. ArXiv Prepr arXiv:​170707294
8.
go back to reference Montavon G et al (2013) Machine learning of molecular electronic properties in chemical compound space. New J Phys 15:95003 Montavon G et al (2013) Machine learning of molecular electronic properties in chemical compound space. New J Phys 15:95003
9.
go back to reference Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R (2013) Accelerating materials property predictions using machine learning. Sci Rep 3:2810 Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R (2013) Accelerating materials property predictions using machine learning. Sci Rep 3:2810
10.
go back to reference Meredig B et al (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89:094104 Meredig B et al (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89:094104
11.
go back to reference Deml AM, O’Hayre R, Wolverton C, Stevanovic V (2016) Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression. Phys Rev B 93:085142 Deml AM, O’Hayre R, Wolverton C, Stevanovic V (2016) Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression. Phys Rev B 93:085142
12.
go back to reference Legrain F, Carrete J, van Roekeghem A, Curtarolo S, Mingo N (2017) How the chemical composition alone can predict vibrational free energies and entropies of solids. arXiv preprint arXiv:1703.02309 Legrain F, Carrete J, van Roekeghem A, Curtarolo S, Mingo N (2017) How the chemical composition alone can predict vibrational free energies and entropies of solids. arXiv preprint arXiv:​1703.​02309
13.
go back to reference Medasani B et al (2016) Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning. NPJ Comput Mater 2:1 Medasani B et al (2016) Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning. NPJ Comput Mater 2:1
14.
go back to reference Seko A, Maekawa T, Tsuda K, Tanaka I (2014) Machine learning with systematic density functional theory calculations: Application to melting temperatures of single- and binary component solids. Phys Rev B 89:054303 Seko A, Maekawa T, Tsuda K, Tanaka I (2014) Machine learning with systematic density functional theory calculations: Application to melting temperatures of single- and binary component solids. Phys Rev B 89:054303
15.
go back to reference Pilania G, Gubernatis JE, Lookman T (2015) Structure classification and melting temperature prediction in octet AB solids via machine learning. Phys Rev B 91:214302 Pilania G, Gubernatis JE, Lookman T (2015) Structure classification and melting temperature prediction in octet AB solids via machine learning. Phys Rev B 91:214302
16.
go back to reference Aryal S, Sakidja R, Barsoum MW, Ching W-Y (2014) A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys Status Solidi 251:1480–1497 Aryal S, Sakidja R, Barsoum MW, Ching W-Y (2014) A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys Status Solidi 251:1480–1497
17.
go back to reference De Jong M et al (2016) A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep 6:34256 De Jong M et al (2016) A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep 6:34256
18.
go back to reference Pilania G et al (2016) Machine learning bandgaps of double perovskites. Sci Rep 6:19375 Pilania G et al (2016) Machine learning bandgaps of double perovskites. Sci Rep 6:19375
19.
go back to reference Lee J, Seko A, Shitara K, Nakayama K, Tanaka I (2016) Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys Rev B 93:115104 Lee J, Seko A, Shitara K, Nakayama K, Tanaka I (2016) Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys Rev B 93:115104
20.
go back to reference Pilania G, Gubernatis JE, Lookman T (2017) Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput Mater Sci 129:156–163 Pilania G, Gubernatis JE, Lookman T (2017) Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput Mater Sci 129:156–163
21.
go back to reference Weston L, Stampfl C (2017) Machine learning the band gap properties of kesterite \(\text{I}_2\)–II–IV–\(\text{V}_4\) quaternary compounds for photovoltaics applications. ArXiv Prepr arXiv:170808530 Weston L, Stampfl C (2017) Machine learning the band gap properties of kesterite \(\text{I}_2\)–II–IV–\(\text{V}_4\) quaternary compounds for photovoltaics applications. ArXiv Prepr arXiv:​170808530
22.
go back to reference Seko A et al (2015) Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett 115:205901 Seko A et al (2015) Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett 115:205901
23.
go back to reference Kim C, Pilania G, Ramprasad R (2016) From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem Mater 28:1304–1311 Kim C, Pilania G, Ramprasad R (2016) From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem Mater 28:1304–1311
24.
go back to reference Kim C, Pilania G, Ramprasad R (2016) Machine learning assisted predictions of intrinsic dielectric breakdown strength of \(\text{ABX}_3\) perovskites. J Phys Chem C 120:14575–14580 Kim C, Pilania G, Ramprasad R (2016) Machine learning assisted predictions of intrinsic dielectric breakdown strength of \(\text{ABX}_3\) perovskites. J Phys Chem C 120:14575–14580
25.
go back to reference Hong WT, Welsch RE, Shao-Horn Y (2016) Descriptors of Oxygen-Evolution activity for oxides: A statistical evaluation. J Phys Chem C 120:78–86 Hong WT, Welsch RE, Shao-Horn Y (2016) Descriptors of Oxygen-Evolution activity for oxides: A statistical evaluation. J Phys Chem C 120:78–86
26.
go back to reference Li Z, Ma X, Xin H (2017) Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today 280:232–238 Li Z, Ma X, Xin H (2017) Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today 280:232–238
27.
go back to reference Pilania G et al (2017) Using machine learning to identify factors that govern amorphization of irradiated pyrochlores. Chem Mater 29:2574–2583 Pilania G et al (2017) Using machine learning to identify factors that govern amorphization of irradiated pyrochlores. Chem Mater 29:2574–2583
28.
go back to reference Xue D et al (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7:11241 Xue D et al (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7:11241
29.
go back to reference Xue D et al (2016) Accelerated search for \(\text{ BaTiO }_3\)-based piezoelectrics with vertical morphotropic phase boundary using bayesian learning. Proc Natl Acad Sci 113:13301–13306 Xue D et al (2016) Accelerated search for \(\text{ BaTiO }_3\)-based piezoelectrics with vertical morphotropic phase boundary using bayesian learning. Proc Natl Acad Sci 113:13301–13306
30.
go back to reference Ashton M, Hennig RG, Broderick SR, Rajan K, Sinnott SB (2016) Computational discovery of stable \(\text{ M }_2\text{ AX }\) phases. Phys Rev B 94:20 Ashton M, Hennig RG, Broderick SR, Rajan K, Sinnott SB (2016) Computational discovery of stable \(\text{ M }_2\text{ AX }\) phases. Phys Rev B 94:20
31.
go back to reference Pilania G, Balachandran PV, Kim C, Lookman T (2016) Finding new perovskite halides via machine learning. Front Mater 3:19 Pilania G, Balachandran PV, Kim C, Lookman T (2016) Finding new perovskite halides via machine learning. Front Mater 3:19
32.
go back to reference Faber FA, Lindmaa A, von Lilienfeld OA, Armiento R (2016) Machine learning energies of 2 million elpasolite (\(\text{ABC}_2\text{D}_6\)) crystals. Phys Rev Lett 117:135502 Faber FA, Lindmaa A, von Lilienfeld OA, Armiento R (2016) Machine learning energies of 2 million elpasolite (\(\text{ABC}_2\text{D}_6\)) crystals. Phys Rev Lett 117:135502
33.
go back to reference Fernandez M, Boyd PG, Da TD, Aghaji MZ, Woo TK (2014) Rapid and accurate machine learning recognition of high performing metal organic frameworks for \(\text{CO}_2\) capture. J Phys Chem Lett 5:3056–3060 Fernandez M, Boyd PG, Da TD, Aghaji MZ, Woo TK (2014) Rapid and accurate machine learning recognition of high performing metal organic frameworks for \(\text{CO}_2\) capture. J Phys Chem Lett 5:3056–3060
34.
go back to reference Emery AA, Saal JE, Kirklin S, Hegde VI, Wolverton C (2016) High-Throughput computational screening of perovskites for thermochemical water splitting applications. Chem Mater 28:5621–5634 Emery AA, Saal JE, Kirklin S, Hegde VI, Wolverton C (2016) High-Throughput computational screening of perovskites for thermochemical water splitting applications. Chem Mater 28:5621–5634
36.
go back to reference Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114:105503 Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114:105503
37.
go back to reference Mueller T, Kusne AG, Ramprasad R (2016) Machine learning in materials science. In: Parril AL, Lipkowitz KB (eds) Reviews in computational chemistry. Wiley, Hoboken, pp 186–273 Mueller T, Kusne AG, Ramprasad R (2016) Machine learning in materials science. In: Parril AL, Lipkowitz KB (eds) Reviews in computational chemistry. Wiley, Hoboken, pp 186–273
38.
go back to reference Bartok AP, Kondor R, Csanyi G (2013) On representing chemical environments. Phys Rev B 87:184115 Bartok AP, Kondor R, Csanyi G (2013) On representing chemical environments. Phys Rev B 87:184115
39.
go back to reference Behler J (2014) Representing potential energy surfaces by high-dimensional neural network potentials. J Phys Condens Matter 26:183001 Behler J (2014) Representing potential energy surfaces by high-dimensional neural network potentials. J Phys Condens Matter 26:183001
40.
go back to reference Li Z, Kermode JR, De Vita A (2015) Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett 114:096405 Li Z, Kermode JR, De Vita A (2015) Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett 114:096405
41.
go back to reference Botu V, Ramprasad R (2015) Learning scheme to predict atomic forces and accelerate materials simulations. Phys Rev B 92:094306 Botu V, Ramprasad R (2015) Learning scheme to predict atomic forces and accelerate materials simulations. Phys Rev B 92:094306
42.
go back to reference Botu V, Ramprasad R (2015) Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int J Quantum Chem 115:1074–1083 Botu V, Ramprasad R (2015) Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int J Quantum Chem 115:1074–1083
43.
go back to reference Yu ET, Chow DH, McGill TC (1988) Commutativity of the GaAs/AlAs (100) band offset. Phys Rev B 38:12764 Yu ET, Chow DH, McGill TC (1988) Commutativity of the GaAs/AlAs (100) band offset. Phys Rev B 38:12764
44.
go back to reference Larsson MW, Wagner JB, Wallin M, Hakansson P, Fröberg LE, Samuelson L, Wallenberg LR (2006) Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology 18:015504 Larsson MW, Wagner JB, Wallin M, Hakansson P, Fröberg LE, Samuelson L, Wallenberg LR (2006) Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology 18:015504
45.
go back to reference Chang YM, Liou SC, Chen CH, Lee HM, Gwo S (2010) The electrostatic coupling of longitudinal optical phonon and plasmon in wurtzite InN thin films. Appl Phys Lett 96:041908 Chang YM, Liou SC, Chen CH, Lee HM, Gwo S (2010) The electrostatic coupling of longitudinal optical phonon and plasmon in wurtzite InN thin films. Appl Phys Lett 96:041908
46.
go back to reference Koguchi M, Kakibayashi H, Yazawa M, Hiruma K, Katsuyama T (1992) Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn J Appl Phys 31:2061 Koguchi M, Kakibayashi H, Yazawa M, Hiruma K, Katsuyama T (1992) Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn J Appl Phys 31:2061
47.
go back to reference Ma C, Moore D, Li J, Wang ZL (2003) Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS. Adv Mater 15:228–231 Ma C, Moore D, Li J, Wang ZL (2003) Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS. Adv Mater 15:228–231
48.
go back to reference Kohn W (1999) Nobel Lecture: Electronic structure of matter–wave functions and density functionals. Rev Mod Phys 71:1253 Kohn W (1999) Nobel Lecture: Electronic structure of matter–wave functions and density functionals. Rev Mod Phys 71:1253
49.
go back to reference Martin R (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, New York Martin R (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, New York
50.
go back to reference Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186 Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186
52.
go back to reference Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244 Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244
53.
go back to reference Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979 Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979
54.
go back to reference Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188 Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188
55.
go back to reference Heyd J, Scuseria GE, Ernzerhof E (2006) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906 Heyd J, Scuseria GE, Ernzerhof E (2006) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906
56.
go back to reference Born M, Huang K (1956) Dynamical theory of crystal lattices. Clarendon, Oxford Born M, Huang K (1956) Dynamical theory of crystal lattices. Clarendon, Oxford
57.
go back to reference Huan TD, Mannodi-Kanakkithodi A, Ramprasad R (2015) Accelerated materials property predictions and design using motif-based fingerprints. Phys Rev B 92:014106 Huan TD, Mannodi-Kanakkithodi A, Ramprasad R (2015) Accelerated materials property predictions and design using motif-based fingerprints. Phys Rev B 92:014106
58.
go back to reference Botu V, Batra R, Chapman J, Ramprasad R (2016) Machine learning force fields: construction, validation, and outlook. J Phys Chem C 121:511–522 Botu V, Batra R, Chapman J, Ramprasad R (2016) Machine learning force fields: construction, validation, and outlook. J Phys Chem C 121:511–522
59.
go back to reference Jasrasaria D, Pyzer-Knapp EO, Rappoport D, Aspuru-Guzik A (2016) Space-filling curves as a novel crystal structure representation for machine learning models. arXiv preprint arXiv:1608.05747 Jasrasaria D, Pyzer-Knapp EO, Rappoport D, Aspuru-Guzik A (2016) Space-filling curves as a novel crystal structure representation for machine learning models. arXiv preprint arXiv:​1608.​05747
60.
go back to reference Huang B, von Lilienfeld OA (2016) Communication: understanding molecular representations in machine learning: the role of uniqueness and target similarity. J Chem Phys 145:161102 Huang B, von Lilienfeld OA (2016) Communication: understanding molecular representations in machine learning: the role of uniqueness and target similarity. J Chem Phys 145:161102
62.
go back to reference Cubuk ED, Malone BD, Onat B, Waterland A, Kaxiras E (2017) Representations in neural network based empirical potentials. J Chem Phys 147:024104 Cubuk ED, Malone BD, Onat B, Waterland A, Kaxiras E (2017) Representations in neural network based empirical potentials. J Chem Phys 147:024104
63.
go back to reference Artrith N, Urban A, Ceder G (2017) Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys Rev B 96:014112 Artrith N, Urban A, Ceder G (2017) Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys Rev B 96:014112
64.
65.
go back to reference Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T, Ramprasad R (2016) Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep 6:20952 Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T, Ramprasad R (2016) Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep 6:20952
66.
go back to reference Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, New York
67.
go back to reference Vu K et al (2015) Understanding kernel ridge regression: common behaviors from simple functions to density functionals. Int J Quantum Chem 115:1115–1128 Vu K et al (2015) Understanding kernel ridge regression: common behaviors from simple functions to density functionals. Int J Quantum Chem 115:1115–1128
68.
go back to reference Rupp M (2015) Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem 115:1058–1073 Rupp M (2015) Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem 115:1058–1073
69.
go back to reference Muller K-R, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181 Muller K-R, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12:181
70.
go back to reference Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, Hoboken
71.
go back to reference Weber MJ (2002) Handbook of optical materials. CRC Press, Boca Raton Weber MJ (2002) Handbook of optical materials. CRC Press, Boca Raton
72.
go back to reference Madelung O (2012) Semiconductors: data handbook. Springer, New York Madelung O (2012) Semiconductors: data handbook. Springer, New York
73.
go back to reference Sham LJ, Schlüter M (1983) Density-functional theory of the energy gap. Phys Rev Lett 51:1888 Sham LJ, Schlüter M (1983) Density-functional theory of the energy gap. Phys Rev Lett 51:1888
74.
go back to reference Cohen AJ, Mori-Sánchez P, Yang W (2008) Fractional charge perspective on the bandgap in density-functional theory. Phys Rev B 77:115123 Cohen AJ, Mori-Sánchez P, Yang W (2008) Fractional charge perspective on the bandgap in density-functional theory. Phys Rev B 77:115123
75.
go back to reference Mori-Sánchez P, Cohen AJ, Yang W (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100:146401 Mori-Sánchez P, Cohen AJ, Yang W (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100:146401
76.
go back to reference Jain A, Shin Y, Persson KA (2016) Computational predictions of energy materials using density functional theory. Nat Rev Mater 1:15004 Jain A, Shin Y, Persson KA (2016) Computational predictions of energy materials using density functional theory. Nat Rev Mater 1:15004
77.
go back to reference Olivares-Amaya R et al (2011) Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci 4:4849 Olivares-Amaya R et al (2011) Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci 4:4849
78.
go back to reference Nilsson A, Pettersson LG, Nørskov J (2011) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam Nilsson A, Pettersson LG, Nørskov J (2011) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam
79.
go back to reference Dey P, Bible J, Datta S, Broderick S, Jasinski J, Sunkara M, Menon M, Rajan K (2014) Informatics-aided bandgap engineering for solar materials. Comput Mater Sci 83:185 Dey P, Bible J, Datta S, Broderick S, Jasinski J, Sunkara M, Menon M, Rajan K (2014) Informatics-aided bandgap engineering for solar materials. Comput Mater Sci 83:185
80.
go back to reference Castelli IE, Garca-Lastra JM, Hüser F, Thygesen KS, Jacobsen KW (2013) Stability and bandgaps of layered perovskites for one-and two-photon water splitting. New J Phys 15:105026 Castelli IE, Garca-Lastra JM, Hüser F, Thygesen KS, Jacobsen KW (2013) Stability and bandgaps of layered perovskites for one-and two-photon water splitting. New J Phys 15:105026
81.
go back to reference Rasmussen F, Thygesen KS (2015) Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Phys Chem C 119:13169–13183 Rasmussen F, Thygesen KS (2015) Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. Phys Chem C 119:13169–13183
Metadata
Title
Machine learning properties of binary wurtzite superlattices
Authors
G. Pilania
X.-Y. Liu
Publication date
12-01-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-1987-z

Other articles of this Issue 9/2018

Journal of Materials Science 9/2018 Go to the issue

Premium Partners