Skip to main content
Top

2022 | OriginalPaper | Chapter

8. Machine Vision Based Smart Machining System Monitoring

Author : Kunpeng Zhu

Published in: Smart Machining Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine vision based monitoring system refers to the monitoring system that captures the target attributes (pixel distribution, brightness, colour, etc.) using visual devices, and transmit and process the digital image to carry out a variety of detection and control operations for equipment action. The advantage of machine vision is that with a proper setup it can reaches high precision non-destructive monitoring in the machining process, and improves the flexibility and automation of production.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Davies ER (2012) Computer and machine vision: theory, algorithms, practicalities, 5th edn. Academic Press Davies ER (2012) Computer and machine vision: theory, algorithms, practicalities, 5th edn. Academic Press
2.
go back to reference Beyerer J, León FP, Frese C (2015) Machine vision: automated visual inspection: theory, practice and applications. Springer Beyerer J, León FP, Frese C (2015) Machine vision: automated visual inspection: theory, practice and applications. Springer
3.
go back to reference Li Q, Ren S (2012) A real-time visual inspection system for discrete surface defects of rail heads. IEEE Trans Instrum Meas Li Q, Ren S (2012) A real-time visual inspection system for discrete surface defects of rail heads. IEEE Trans Instrum Meas
4.
go back to reference Luo Q, Fang X, Liu L, Yang C, Sun Y (2020) Automated visual defect detection for flat steel surface: a survey. IEEE Trans Instrum Meas 69(3):626–644CrossRef Luo Q, Fang X, Liu L, Yang C, Sun Y (2020) Automated visual defect detection for flat steel surface: a survey. IEEE Trans Instrum Meas 69(3):626–644CrossRef
5.
go back to reference Ren R, Hung T, Tan K (2018) A generic deep-learning-based approach for automated surface inspection. IEEE Trans Cybern 48(3):929–940CrossRef Ren R, Hung T, Tan K (2018) A generic deep-learning-based approach for automated surface inspection. IEEE Trans Cybern 48(3):929–940CrossRef
6.
go back to reference Scime L, Beuth J (2018) Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit Manufact Scime L, Beuth J (2018) Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit Manufact
7.
go back to reference Aminzadeh M, Kurfess TR (2019) Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. J Intell Manuf 30(6):2505–2523CrossRef Aminzadeh M, Kurfess TR (2019) Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. J Intell Manuf 30(6):2505–2523CrossRef
8.
go back to reference Chauhan V, Surgenor B (2017) Fault detection and classification in automated assembly machines using machine vision. Int J Adv Manufact Technol Chauhan V, Surgenor B (2017) Fault detection and classification in automated assembly machines using machine vision. Int J Adv Manufact Technol
9.
go back to reference Huang SH, Pan YC (2015) Automated visual inspection in the semiconductor industry: a survey. Comput Ind 66:1–10CrossRef Huang SH, Pan YC (2015) Automated visual inspection in the semiconductor industry: a survey. Comput Ind 66:1–10CrossRef
10.
go back to reference Cheng Y, Jafari MA (2008) Vision-based online process control in manufacturing applications. IEEE Trans Automat Sci Eng 5(1):140–153 Cheng Y, Jafari MA (2008) Vision-based online process control in manufacturing applications. IEEE Trans Automat Sci Eng 5(1):140–153
11.
go back to reference Castejón M, Alegre E, Barreiro J, Hernandez LK (2007) On-line tool wear monitoring using geometric descriptors from digital images. Int J Mach Tools Manuf 47(12–13):1847–1853CrossRef Castejón M, Alegre E, Barreiro J, Hernandez LK (2007) On-line tool wear monitoring using geometric descriptors from digital images. Int J Mach Tools Manuf 47(12–13):1847–1853CrossRef
12.
go back to reference Lins RG, De Araujo PR, Corazzim M (2020) In-process machine vision monitoring of tool wear for cyber-physical production systems. Robot Comput-Integrat Manufact 61:101859 Lins RG, De Araujo PR, Corazzim M (2020) In-process machine vision monitoring of tool wear for cyber-physical production systems. Robot Comput-Integrat Manufact 61:101859
13.
go back to reference Zhang C, Zhang J (2013) On-line tool wear measurement for ball-end milling cutter based on machine vision. Comput Ind 64(6):708–718CrossRef Zhang C, Zhang J (2013) On-line tool wear measurement for ball-end milling cutter based on machine vision. Comput Ind 64(6):708–718CrossRef
14.
go back to reference Zhu K, Yu X (2017) The monitoring of micro milling tool wear conditions by wear area estimation. Mech Syst Signal Process 93:80–91CrossRef Zhu K, Yu X (2017) The monitoring of micro milling tool wear conditions by wear area estimation. Mech Syst Signal Process 93:80–91CrossRef
15.
go back to reference García-Ordás MT, Alegre-Gutiérrez E, Alaiz-Rodríguez R et al (2018) Tool wear monitoring using an online, automatic and low cost system based on local texture. Mech Syst Signal Process 112:98–112CrossRef García-Ordás MT, Alegre-Gutiérrez E, Alaiz-Rodríguez R et al (2018) Tool wear monitoring using an online, automatic and low cost system based on local texture. Mech Syst Signal Process 112:98–112CrossRef
16.
go back to reference Dutta S, Pal SK, Sen R (2016) On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression. Precis Eng 43:34–42CrossRef Dutta S, Pal SK, Sen R (2016) On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression. Precis Eng 43:34–42CrossRef
17.
go back to reference Fernández-Robles L, Azzopardi G, Alegre E, Petkov N (2017) Machine-vision-based identification of broken inserts in edge profile milling heads. Robot Comput Integr Manuf 44:276–283CrossRef Fernández-Robles L, Azzopardi G, Alegre E, Petkov N (2017) Machine-vision-based identification of broken inserts in edge profile milling heads. Robot Comput Integr Manuf 44:276–283CrossRef
18.
go back to reference Dutta S, Pal SK, Mukhopadhyay S, Sen R (2013) Application of digital image processing in tool condition monitoring: a review. CIRP J Manuf Sci Technol 6(3):212–232CrossRef Dutta S, Pal SK, Mukhopadhyay S, Sen R (2013) Application of digital image processing in tool condition monitoring: a review. CIRP J Manuf Sci Technol 6(3):212–232CrossRef
19.
go back to reference Wang W, Wong YS, Hong GS (2005) Flank wear measurement by successive image analysis. Comput Ind 56:816–830CrossRef Wang W, Wong YS, Hong GS (2005) Flank wear measurement by successive image analysis. Comput Ind 56:816–830CrossRef
20.
go back to reference Prasad KN, Ramamoorthy B (2001) Tool wear evaluation by stereo vision and prediction by artificial neural network. J Mater Process Technol 112:43–52. Prasad KN, Ramamoorthy B (2001) Tool wear evaluation by stereo vision and prediction by artificial neural network. J Mater Process Technol 112:43–52.
21.
go back to reference Devillez A, Lesko S, Mozer W (2004) Cutting tool crater wear measurement with white light interferometry. Wear 256:56–65CrossRef Devillez A, Lesko S, Mozer W (2004) Cutting tool crater wear measurement with white light interferometry. Wear 256:56–65CrossRef
22.
go back to reference Wang WH, Wong YS, Hong GS (2006) 3D measurement of crater wear by phase shifting method. Wear 261:164–171CrossRef Wang WH, Wong YS, Hong GS (2006) 3D measurement of crater wear by phase shifting method. Wear 261:164–171CrossRef
23.
go back to reference Kassim AA, Mian Z, Mannan MA (2004) Connectivity oriented fast Hough transform for tool wear monitoring. Pattern Recognit 37:1925–1933 Kassim AA, Mian Z, Mannan MA (2004) Connectivity oriented fast Hough transform for tool wear monitoring. Pattern Recognit 37:1925–1933
24.
go back to reference Tönshoff HK, Inasaki I (eds) (2001) Sensors in manufacturing. Wiley-VCH Tönshoff HK, Inasaki I (eds) (2001) Sensors in manufacturing. Wiley-VCH
25.
go back to reference Demant C, Streicher-Abel B, Garnica C (2013) Industrial image processing, 2nd edn. Springer Demant C, Streicher-Abel B, Garnica C (2013) Industrial image processing, 2nd edn. Springer
26.
go back to reference Gonzalez RC, Woods RE (2018) Digital image processing, 4th ed. New York Gonzalez RC, Woods RE (2018) Digital image processing, 4th ed. New York
27.
go back to reference Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46:313–332CrossRef Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46:313–332CrossRef
28.
go back to reference Patra K, Jha AK, Szalay T, Ranjan J, Monostori L (2017) Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals. Precis Eng 48:279–291CrossRef Patra K, Jha AK, Szalay T, Ranjan J, Monostori L (2017) Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals. Precis Eng 48:279–291CrossRef
29.
go back to reference Tansel I, Nedbouyan A, Trujillo M, Tansel B (1998) Micro-end-milling—II. Extending tool life with a smart workpiece holder (SWH). Int J Mach Tools Manufact 38:1437–1448 Tansel I, Nedbouyan A, Trujillo M, Tansel B (1998) Micro-end-milling—II. Extending tool life with a smart workpiece holder (SWH). Int J Mach Tools Manufact 38:1437–1448
30.
go back to reference Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33:402–407CrossRef Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33:402–407CrossRef
31.
go back to reference Tansel IN, Arkan TT, Bao WY, Mahendrakar N, Shisler B, McCool D (2000) Tool wear estimation in micro-machining. Part I: tool usage–cutting force relationship. Int J Mach Tools Manufact 40:599–608 Tansel IN, Arkan TT, Bao WY, Mahendrakar N, Shisler B, McCool D (2000) Tool wear estimation in micro-machining. Part I: tool usage–cutting force relationship. Int J Mach Tools Manufact 40:599–608
32.
go back to reference Lee HC, Chang YC, Huang YS (2014) A reliable wireless sensor system for monitoring mechanical wear-out of parts. IEEE Trans Instrum Meas 63:2488–2497CrossRef Lee HC, Chang YC, Huang YS (2014) A reliable wireless sensor system for monitoring mechanical wear-out of parts. IEEE Trans Instrum Meas 63:2488–2497CrossRef
33.
go back to reference Tansel I, Trujillo M, Nedbouyan A, Velez C, Bao WY (1998) Micro-end-milling—III. Wear estimation and tool breakage detection using acoustic emission signals. Int J Mach Tools Manufact 38:1449–1466 Tansel I, Trujillo M, Nedbouyan A, Velez C, Bao WY (1998) Micro-end-milling—III. Wear estimation and tool breakage detection using acoustic emission signals. Int J Mach Tools Manufact 38:1449–1466
34.
go back to reference Szydłowski M, Powałkaa B, Matuszakb M, Kochmańskia P (2016) Machine vision micro-milling tool wear inspection by image reconstruction and light reflectance. Precis Eng 44:236–244CrossRef Szydłowski M, Powałkaa B, Matuszakb M, Kochmańskia P (2016) Machine vision micro-milling tool wear inspection by image reconstruction and light reflectance. Precis Eng 44:236–244CrossRef
35.
go back to reference Astakhov VP (2004) The assessment of cutting tool wear. Int J Mach Tools Manuf 44:637–647CrossRef Astakhov VP (2004) The assessment of cutting tool wear. Int J Mach Tools Manuf 44:637–647CrossRef
36.
go back to reference Castejón M, Alegre E, Barreiro J, Hernández LK (2007) On-line tool wear monitoring using geometric descriptors from digital images. Int J Mach Tools Manuf 47:1847–1853CrossRef Castejón M, Alegre E, Barreiro J, Hernández LK (2007) On-line tool wear monitoring using geometric descriptors from digital images. Int J Mach Tools Manuf 47:1847–1853CrossRef
37.
go back to reference Dutta S, Kanwat A, Pal SK, Sen R (2013) Correlation study of tool flank wear with machined surface texture in end milling. Measurement 46:4249–4260CrossRef Dutta S, Kanwat A, Pal SK, Sen R (2013) Correlation study of tool flank wear with machined surface texture in end milling. Measurement 46:4249–4260CrossRef
38.
go back to reference Jackson MJ, Robinson GM, Hyde J, Rhodes R (2006) Neural image processing of the wear of cutting tools coated with thin films. J Mater Eng Perform 15(2):223–229CrossRef Jackson MJ, Robinson GM, Hyde J, Rhodes R (2006) Neural image processing of the wear of cutting tools coated with thin films. J Mater Eng Perform 15(2):223–229CrossRef
39.
go back to reference Shen J, Castan S (1992) An optimal linear operator for step edge detection. CVGIP: Graph Models Image Proces 54:112–133 Shen J, Castan S (1992) An optimal linear operator for step edge detection. CVGIP: Graph Models Image Proces 54:112–133
40.
go back to reference Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: IEEE international conference on computer vision (ICCV), Bombay, India, Jan 7 Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: IEEE international conference on computer vision (ICCV), Bombay, India, Jan 7
41.
go back to reference He KM, Sun J, Tang XO (2010) Guided image filtering. In: European conference on computer vision (ECCV). Berlin, Germany, Sept 5–11 He KM, Sun J, Tang XO (2010) Guided image filtering. In: European conference on computer vision (ECCV). Berlin, Germany, Sept 5–11
42.
go back to reference Jain P, Tyagi V (2016) A survey of edge-preserving image denoising methods. Inf Syst Front 18:159–170CrossRef Jain P, Tyagi V (2016) A survey of edge-preserving image denoising methods. Inf Syst Front 18:159–170CrossRef
43.
go back to reference Zhu KP, Mei T, Ye DS (2015) Online condition monitoring in micromilling: a force waveform shape analysis approach. IEEE Trans Industr Electron 62:3806–3813 Zhu KP, Mei T, Ye DS (2015) Online condition monitoring in micromilling: a force waveform shape analysis approach. IEEE Trans Industr Electron 62:3806–3813
44.
go back to reference Barreiroa J, Castejóna M, Alegrea E, Hernándezb LK (2008) Use of descriptors based on moments from digital images for tool wear monitoring. Int J Mach Tools Manuf 48:1005–1013CrossRef Barreiroa J, Castejóna M, Alegrea E, Hernándezb LK (2008) Use of descriptors based on moments from digital images for tool wear monitoring. Int J Mach Tools Manuf 48:1005–1013CrossRef
45.
go back to reference Liu TI (1990) A computer vision approach for drill wear measurements. J Mater Shaping Technol 8:11–16CrossRef Liu TI (1990) A computer vision approach for drill wear measurements. J Mater Shaping Technol 8:11–16CrossRef
46.
go back to reference Malekian M, Park SS, Jun MBG (2009) Tool wear monitoring of micro-milling operations. J Mater Process Technol 209:4903–4914CrossRef Malekian M, Park SS, Jun MBG (2009) Tool wear monitoring of micro-milling operations. J Mater Process Technol 209:4903–4914CrossRef
47.
go back to reference Fleischer J, Deuchert M, Ruhs C, Kühlewein C, Halvadjiysky G, Schmidt C (2008) Design and manufacturing of micro milling tools. Microsyst Technol 14:1771–1775CrossRef Fleischer J, Deuchert M, Ruhs C, Kühlewein C, Halvadjiysky G, Schmidt C (2008) Design and manufacturing of micro milling tools. Microsyst Technol 14:1771–1775CrossRef
48.
go back to reference Su JC, Huang CK, Tarng YS (2006) An automated flank wear measurement of microdrills using machine vision. J Mater Process Technol 180(1–3):328–335CrossRef Su JC, Huang CK, Tarng YS (2006) An automated flank wear measurement of microdrills using machine vision. J Mater Process Technol 180(1–3):328–335CrossRef
49.
go back to reference Lee KH, Dornfeld DA (2005) Micro-burr formation and minimization through process control. Precis Eng 29:246–252CrossRef Lee KH, Dornfeld DA (2005) Micro-burr formation and minimization through process control. Precis Eng 29:246–252CrossRef
50.
go back to reference Attanasio A (2017) Tool run-out measurement in micro milling. Micromachines 8(7):221CrossRef Attanasio A (2017) Tool run-out measurement in micro milling. Micromachines 8(7):221CrossRef
51.
go back to reference Castro HFF (2008) A method for evaluating spindle rotation errors of machine tools using a laser interferometer. Measurement 41(5):526–537CrossRef Castro HFF (2008) A method for evaluating spindle rotation errors of machine tools using a laser interferometer. Measurement 41(5):526–537CrossRef
52.
go back to reference Li KX, Zhu KP, Mei T (2016) A generic instantaneous undeformed chip thickness model for the cutting force modeling in micromilling. Int J Mach Tools Manuf 105:23–31CrossRef Li KX, Zhu KP, Mei T (2016) A generic instantaneous undeformed chip thickness model for the cutting force modeling in micromilling. Int J Mach Tools Manuf 105:23–31CrossRef
Metadata
Title
Machine Vision Based Smart Machining System Monitoring
Author
Kunpeng Zhu
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-87878-8_8

Premium Partners