Skip to main content
Top
Published in: Wireless Networks 3/2018

18-10-2016

Macro cellular network transition from traditional frequency range to 28 GHz millimeter wave frequency band

Authors: Muhammad Usman Sheikh, Jukka Lempiäinen

Published in: Wireless Networks | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The target of this article is to analyze the impact of transition from cellular frequency band i.e. 2.1 GHz to Millimeter Wave (mmWave) frequency band i.e. 28 GHz. A three dimensional ray tracing tool “sAGA” was used to evaluate the performance of the macro cellular network in urban/dense-urban area of the Helsinki city. A detailed analysis of user experience in terms of signal strength and signal quality for outdoor and indoor users is presented. Indoor users at different floors are separately studied in this paper. It is found that in spite of considering high system gain at 28 GHz the mean received signal power is reduced by almost 16.5 dB compared with transmission at 2.1 GHz. However, the SINR is marginally changed at higher frequency. Even with 200 MHz system bandwidth at 28 GHz, no substantial change is witnessed in signal quality for the outdoor and upper floor indoor users. However, the users at lower floors show some sign of degradation in received signal quality with 200 MHz bandwidth. Moreover, it is also emphasized that mobile operators should take benefit of un-utilized spectrum in the mmWave bands. In short, this paper highlights the potential and the gain of mmWave communications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cisco White Paper. (2015). Cisco visual networking index: Global mobile data traffic forecast update, 2014–2019. Cisco White Paper. (2015). Cisco visual networking index: Global mobile data traffic forecast update, 20142019.
2.
go back to reference Sheikh, M. U., Jagusz, R., & Lempiainen, J. (2011). Performance evaluation of adaptive MIMO switching in long term evolution. In 7th international conference on wireless communication and mobile computing (pp. 866–870). July, 4–8, 2011. Sheikh, M. U., Jagusz, R., & Lempiainen, J. (2011). Performance evaluation of adaptive MIMO switching in long term evolution. In 7th international conference on wireless communication and mobile computing (pp. 866–870). July, 4–8, 2011.
3.
go back to reference GPP, TS 36.300. (2007). E-UTRA and E-UTRAN overall description: Stage 2, (Release 8), V8.0.0. GPP, TS 36.300. (2007). E-UTRA and E-UTRAN overall description: Stage 2, (Release 8), V8.0.0.
4.
go back to reference GPP, TS 36.300. (2012). E-UTRA and E-UTRAN overall description: Stage 2 (Release 10), V11.3.0. GPP, TS 36.300. (2012). E-UTRA and E-UTRAN overall description: Stage 2 (Release 10), V11.3.0.
5.
go back to reference Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef
9.
go back to reference Rappaport, T. S., Shu, S., Mayzus, R., et al. (2013). Millimetre wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef Rappaport, T. S., Shu, S., Mayzus, R., et al. (2013). Millimetre wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef
10.
go back to reference Zhao, H., Mayzus, R., Sun, S., Samimi, M., Schulz, J. K., Azar, Y. et al. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings IEEE international conference on communications (pp. 1–6). Zhao, H., Mayzus, R., Sun, S., Samimi, M., Schulz, J. K., Azar, Y. et al. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings IEEE international conference on communications (pp. 1–6).
11.
go back to reference Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60 GHz integrated circuits & systems for wireless communications. Proceedings of the IEEE, 99, 1390–1436.CrossRef Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60 GHz integrated circuits & systems for wireless communications. Proceedings of the IEEE, 99, 1390–1436.CrossRef
12.
go back to reference Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef
13.
go back to reference Karjalainen, J., Nekovee, M., Benn, H., Kim, W., Park, J., & Sungsoo, H. (2014). Challenges and opportunities of mm-wave communication in 5G networks. In 2014 9th international conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 372–376). Karjalainen, J., Nekovee, M., Benn, H., Kim, W., Park, J., & Sungsoo, H. (2014). Challenges and opportunities of mm-wave communication in 5G networks. In 2014 9th international conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 372–376).
14.
go back to reference Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., et al. (2014). Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in Communications, 32(6), 1152–1163.CrossRef Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., et al. (2014). Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in Communications, 32(6), 1152–1163.CrossRef
15.
go back to reference Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRef Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRef
16.
go back to reference Nikolikj, V., & Janevski, T. (2014). A comparative cost-capacity modeling of wireless heterogenous networks, implemented with the 0.7 GHz, 2.6 GHz, 5 GHz, and 28 GHz bands. In IEEE international conference on ultra-wideband (ICUWB) (pp. 489–494). September, 1–3, 2014. Nikolikj, V., & Janevski, T. (2014). A comparative cost-capacity modeling of wireless heterogenous networks, implemented with the 0.7 GHz, 2.6 GHz, 5 GHz, and 28 GHz bands. In IEEE international conference on ultra-wideband (ICUWB) (pp. 489–494). September, 1–3, 2014.
17.
go back to reference Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. K., et al. (2014). What will 5G Be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. K., et al. (2014). What will 5G Be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef
19.
go back to reference Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.CrossRef Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.CrossRef
21.
go back to reference Sheikh, M. U., Lempiäinen, J., & Ahnlund, H. (2013). Advanced antenna techniques and higher order sectorization with novel network tessellation for enhancing macro cell capacity in DC-HSDPA network. International Journal of Wireless & Mobile Networks, 5(5), 65–84.CrossRef Sheikh, M. U., Lempiäinen, J., & Ahnlund, H. (2013). Advanced antenna techniques and higher order sectorization with novel network tessellation for enhancing macro cell capacity in DC-HSDPA network. International Journal of Wireless & Mobile Networks, 5(5), 65–84.CrossRef
22.
go back to reference Zhao, Q., & Li, J. (2006). Rain attenuation in millimeter wave ranges. In International symposium on antennas, propagation, & EM theory. October, 26–29, 2006. Zhao, Q., & Li, J. (2006). Rain attenuation in millimeter wave ranges. In International symposium on antennas, propagation, & EM theory. October, 26–29, 2006.
24.
go back to reference Langen, B., Lober, G., & Herzig, W. (1994). Reflection and transmission behaviour of building materials at 60 GHz. In 5th IEEE international symposium on personal, indoor and mobile radio communications, 1994. Wireless networks—Catching the mobile future (Vol. 2, pp. 505–509). September, 18–23, 1994. Langen, B., Lober, G., & Herzig, W. (1994). Reflection and transmission behaviour of building materials at 60 GHz. In 5th IEEE international symposium on personal, indoor and mobile radio communications, 1994. Wireless networksCatching the mobile future (Vol. 2, pp. 505–509). September, 18–23, 1994.
25.
go back to reference Yong, S. K., & Chong, C. C. (2007). An overview of multigigabit wireless through millimetre wave technology: Potentials and technical challenges. EURASIP Journal on Wireless Communications and Networking, 2007, Art. ID 78907. doi:10.1155/2007/78907. Yong, S. K., & Chong, C. C. (2007). An overview of multigigabit wireless through millimetre wave technology: Potentials and technical challenges. EURASIP Journal on Wireless Communications and Networking, 2007, Art. ID 78907. doi:10.​1155/​2007/​78907.
26.
go back to reference Friis, H. T. (1946). A note on simple transmission formula. Proceedings of the IRE, 34, 254–256.CrossRef Friis, H. T. (1946). A note on simple transmission formula. Proceedings of the IRE, 34, 254–256.CrossRef
27.
go back to reference Cichon, D. J., & Wiesbeck, W. (1994). Ray optical wave propagation modelling in urban micro cells. In PIMRC (pp. 407–410). Cichon, D. J., & Wiesbeck, W. (1994). Ray optical wave propagation modelling in urban micro cells. In PIMRC (pp. 407–410).
28.
go back to reference Schaubach, K. R., Davis, N. J., & Rappaport, T. S. (1992). A ray tracing method for predicting path loss and delay spread in microcellular environments. In IEEE vehicular technology conference, Denver (pp. 932–935). Schaubach, K. R., Davis, N. J., & Rappaport, T. S. (1992). A ray tracing method for predicting path loss and delay spread in microcellular environments. In IEEE vehicular technology conference, Denver (pp. 932–935).
29.
go back to reference Sharples, P. A., & Mehler, M. J. (1993). Propagation modelling in microcellular environments. In IEEE international conference on antenna and propagation (pp. 68–71). Sharples, P. A., & Mehler, M. J. (1993). Propagation modelling in microcellular environments. In IEEE international conference on antenna and propagation (pp. 68–71).
30.
go back to reference Gschwendtner, B. E., Wolfle, G., Burk, B., & Landstorfer, F.M. (1995). Ray tracing vs. ray launching in 3-D microcell modelling. In 1st European personal and mobile communications conference (EPMCC) 1995, Bologna (pp. 74–79). Gschwendtner, B. E., Wolfle, G., Burk, B., & Landstorfer, F.M. (1995). Ray tracing vs. ray launching in 3-D microcell modelling. In 1st European personal and mobile communications conference (EPMCC) 1995, Bologna (pp. 74–79).
31.
go back to reference Son, H. W., & Myung, N. H. (1999). A deterministic ray tube method for microcellular wave propagation prediction model. IEEE Transactions on Antennas and Propagation, 47(8), 1344–1350.CrossRef Son, H. W., & Myung, N. H. (1999). A deterministic ray tube method for microcellular wave propagation prediction model. IEEE Transactions on Antennas and Propagation, 47(8), 1344–1350.CrossRef
32.
go back to reference Soni, S., & Bhattacharya, A. (2012). An efficient two-dimensional ray-tracing algorithm for modeling of urban microcellular environment. International Journal of Electronics and Communications, 66(6), 439–447.CrossRef Soni, S., & Bhattacharya, A. (2012). An efficient two-dimensional ray-tracing algorithm for modeling of urban microcellular environment. International Journal of Electronics and Communications, 66(6), 439–447.CrossRef
33.
go back to reference Schettino, D. N., Moreira, F. J. S., & Rego, C. G. (2006). Efficient ray tracing for radio channel characterization of urban scenarios. In 12th Biennial IEEE conference on electromagnetic field computation, Miami, FL (p. 267). Schettino, D. N., Moreira, F. J. S., & Rego, C. G. (2006). Efficient ray tracing for radio channel characterization of urban scenarios. In 12th Biennial IEEE conference on electromagnetic field computation, Miami, FL (p. 267).
34.
go back to reference Gschwendtner, B. E. (1994). Practical investigation using ray optical prediction techniques in microcells. In Euro-COST 231 TD(94) (p. 127). Gschwendtner, B. E. (1994). Practical investigation using ray optical prediction techniques in microcells. In Euro-COST 231 TD(94) (p. 127).
35.
go back to reference Huschka, T. (1994). Ray tracing models for indoor environments and their computational complexity. In PIMRC (pp. 486–490). Huschka, T. (1994). Ray tracing models for indoor environments and their computational complexity. In PIMRC (pp. 486–490).
37.
go back to reference Sheikh, M. U., & Lempiainen, J. (2013). A flower tessellation for simulation purpose of cellular network with 12-sector sites. IEEE Wireless Communications Letters, 2(3), 279–282.CrossRef Sheikh, M. U., & Lempiainen, J. (2013). A flower tessellation for simulation purpose of cellular network with 12-sector sites. IEEE Wireless Communications Letters, 2(3), 279–282.CrossRef
Metadata
Title
Macro cellular network transition from traditional frequency range to 28 GHz millimeter wave frequency band
Authors
Muhammad Usman Sheikh
Jukka Lempiäinen
Publication date
18-10-2016
Publisher
Springer US
Published in
Wireless Networks / Issue 3/2018
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1390-0

Other articles of this Issue 3/2018

Wireless Networks 3/2018 Go to the issue