Skip to main content
Top
Published in: Fluid Dynamics 7/2020

01-09-2020

Macroscopic Model of Two-Phase Compressible Flow in Double Porosity Media

Authors: M. B. Panfilov, Zh. D. Baishemirov, A. S. Berdyshev

Published in: Fluid Dynamics | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A macroscopic model of two-phase flow of compressible liquids in a compressible double porosity medium is developed and used to analyse various qualitative mechanisms of the occurrence of memory (delay). The two main mechanisms are non-instantaneous capillary redistribution of liquids, and non-instantaneous relaxation of pressure. In addition, cross effects of memory arise, caused by asymmetric extrusion of liquids from pores due to phase expansion and pore compaction, as well as nonlinear overlap of compressibility and capillarity (non-linear extrusion). To construct the model, the asymptotic method of two-scale averaging in the variational formulation is applied. Complete averaging has been achieved due to the separation of nonlocality and nonlinearity at different levels of the asymptotic expansion. All delay times are explicitly defined as functions of saturation and pressure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barenblatt, G.I., Zheltov, Yu.P., and Kochina, I.N., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech. (Engl. Transl.), 1960, vol. 24, no. 5, pp. 1286–1303. Barenblatt, G.I., Zheltov, Yu.P., and Kochina, I.N., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech. (Engl. Transl.), 1960, vol. 24, no. 5, pp. 1286–1303.
2.
go back to reference Arbogast, T., Douglas, J., and Hornung, U., Derivation of the double porosity model of single-phase flow via homogenization theory, SIAM J. Math. Anal., 1990, vol. 21, no. 4, pp. 823–836.MathSciNetCrossRef Arbogast, T., Douglas, J., and Hornung, U., Derivation of the double porosity model of single-phase flow via homogenization theory, SIAM J. Math. Anal., 1990, vol. 21, no. 4, pp. 823–836.MathSciNetCrossRef
3.
go back to reference Panfilov, M., Macroscale Models of Flow through Highly Heterogeneous Porous Media, Dordrecht: Kluwer Academic Publishers, 2000.CrossRef Panfilov, M., Macroscale Models of Flow through Highly Heterogeneous Porous Media, Dordrecht: Kluwer Academic Publishers, 2000.CrossRef
4.
go back to reference Amaziane, B., Jurak, M., Pankratov, L., and Vrbaski, A., Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media, Discrete Contin. Dyn. Syst.- Ser. B, 2018, vol. 23, no. 2, pp. 629–665.MathSciNetMATH Amaziane, B., Jurak, M., Pankratov, L., and Vrbaski, A., Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media, Discrete Contin. Dyn. Syst.- Ser. B, 2018, vol. 23, no. 2, pp. 629–665.MathSciNetMATH
5.
go back to reference Amaziane, B., Milisic, J.P., Panfilov, M., and Pankratov, L., Generalized nonequilibrium capillary relations for two-phase flow through heterogeneous media, Phys. Rev. E, 2012, vol. 85, p. 016304.ADSCrossRef Amaziane, B., Milisic, J.P., Panfilov, M., and Pankratov, L., Generalized nonequilibrium capillary relations for two-phase flow through heterogeneous media, Phys. Rev. E, 2012, vol. 85, p. 016304.ADSCrossRef
6.
go back to reference Amaziane, B., Pankratov, L., Jurak, M., and Vrbaski, A., A fully homogenized model for incompressible two-phase flow in double porosity media, Appl. Anal., 2015, vol. 95, no. 10, pp. 2280–2299.MathSciNetMATH Amaziane, B., Pankratov, L., Jurak, M., and Vrbaski, A., A fully homogenized model for incompressible two-phase flow in double porosity media, Appl. Anal., 2015, vol. 95, no. 10, pp. 2280–2299.MathSciNetMATH
7.
go back to reference Bourgeat, A., Luckhaus, S., and Mikelic, A., Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math. Anal., 1966, vol. 27, no. 6, pp. 1520–1543.MathSciNetCrossRef Bourgeat, A., Luckhaus, S., and Mikelic, A., Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math. Anal., 1966, vol. 27, no. 6, pp. 1520–1543.MathSciNetCrossRef
8.
go back to reference Bourgeat, A. and Panfilov, M., Effective two-phase flow through highly heterogeneous porous media, Comput. Geosci., 1998, vol. 2, pp. 191–215.MathSciNetCrossRef Bourgeat, A. and Panfilov, M., Effective two-phase flow through highly heterogeneous porous media, Comput. Geosci., 1998, vol. 2, pp. 191–215.MathSciNetCrossRef
9.
go back to reference Yeh, L.M., Homogenization of two-phase flow in fractured media, Math. Models Methods Appl. Sci., 2006, vol. 16, pp. 1627–1651.MathSciNetCrossRef Yeh, L.M., Homogenization of two-phase flow in fractured media, Math. Models Methods Appl. Sci., 2006, vol. 16, pp. 1627–1651.MathSciNetCrossRef
10.
go back to reference Arbogast, T., A simplified dual porosity model for two-phase flow, in Computational Methods in Water Resources IX, vol. 2: Mathematical Modeling in Water Resources, Russell, T.F., et al., Eds., Southampton: Computational Mechanics Publ., 1992. Arbogast, T., A simplified dual porosity model for two-phase flow, in Computational Methods in Water Resources IX, vol. 2: Mathematical Modeling in Water Resources, Russell, T.F., et al., Eds., Southampton: Computational Mechanics Publ., 1992.
11.
go back to reference Ait Mahiout, L., Amaziane, B., Mokrane, A., and Pankratov, L., Homogenization of immiscible compressible two-phase flow in double porosity media, Electron. J. Differ. Equations, 2016, vol. 52, pp. 1–28.MathSciNetCrossRef Ait Mahiout, L., Amaziane, B., Mokrane, A., and Pankratov, L., Homogenization of immiscible compressible two-phase flow in double porosity media, Electron. J. Differ. Equations, 2016, vol. 52, pp. 1–28.MathSciNetCrossRef
12.
go back to reference Amaziane, B. and Pankratov, L., Homogenization of a model for water-gas flow through double-porosity media, Math. Methods Appl. Sci., 2016, vol. 39, pp. 425–451.ADSMathSciNetCrossRef Amaziane, B. and Pankratov, L., Homogenization of a model for water-gas flow through double-porosity media, Math. Methods Appl. Sci., 2016, vol. 39, pp. 425–451.ADSMathSciNetCrossRef
13.
go back to reference Jafari, I., Masihi, M., and Nasiri Zarandi, M., Experimental study on imbibition displacement mechanisms of two-phase fluid using micromodel: Fracture network, distribution of pore size, and matrix construction, Phys. Fluids, 2017, vol. 29, no. 11, p. 122004.ADSCrossRef Jafari, I., Masihi, M., and Nasiri Zarandi, M., Experimental study on imbibition displacement mechanisms of two-phase fluid using micromodel: Fracture network, distribution of pore size, and matrix construction, Phys. Fluids, 2017, vol. 29, no. 11, p. 122004.ADSCrossRef
14.
go back to reference Khoshkalam, Y., Khosravi, M., and Rostami, B., Visual investigation of viscous cross-flow during foam injection in a matrix-fracture system, Phys. Fluids, 2019, vol. 31, p. 023102.ADSCrossRef Khoshkalam, Y., Khosravi, M., and Rostami, B., Visual investigation of viscous cross-flow during foam injection in a matrix-fracture system, Phys. Fluids, 2019, vol. 31, p. 023102.ADSCrossRef
15.
go back to reference Yao, C.C. and Yan, P.Y., A diffuse interface approach to injection-driven flow of different miscibility in heterogeneous porous media, Phys. Fluids, 2015, vol. 27, no. 8, p. 083101.ADSCrossRef Yao, C.C. and Yan, P.Y., A diffuse interface approach to injection-driven flow of different miscibility in heterogeneous porous media, Phys. Fluids, 2015, vol. 27, no. 8, p. 083101.ADSCrossRef
16.
go back to reference Li, H., Guo, H., Yang, Z. et al., Evaluation of oil production potential in fractured porous media, Phys. Fluids, 2019, vol. 31, p. 052104.ADSCrossRef Li, H., Guo, H., Yang, Z. et al., Evaluation of oil production potential in fractured porous media, Phys. Fluids, 2019, vol. 31, p. 052104.ADSCrossRef
17.
go back to reference Jafari, I., Masihi, M., and Nasiri Zarandi, M., Numerical simulation of counter-current spontaneous imbibition in water-wet fractured porous media: Influences of water injection velocity, fracture aperture, and 826 grains geometry, Phys. Fluids, 2017, vol. 29, no. 11, p. 113305.ADSCrossRef Jafari, I., Masihi, M., and Nasiri Zarandi, M., Numerical simulation of counter-current spontaneous imbibition in water-wet fractured porous media: Influences of water injection velocity, fracture aperture, and 826 grains geometry, Phys. Fluids, 2017, vol. 29, no. 11, p. 113305.ADSCrossRef
18.
go back to reference Rokhforouz, M.R. and Akhlaghi Amiri H.A., Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium, Phys. Fluids. 2017. V. 29. P. 062104. Rokhforouz, M.R. and Akhlaghi Amiri H.A., Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium, Phys. Fluids. 2017. V. 29. P. 062104.
19.
go back to reference Hussein, M., Multiphase flow simulations in heterogeneous fractured media through hybrid grid method, AIP Conf. Proc., 2013, no. 1558, p. 2048. Hussein, M., Multiphase flow simulations in heterogeneous fractured media through hybrid grid method, AIP Conf. Proc., 2013, no. 1558, p. 2048.
20.
go back to reference Saedi, B., Ayatollahi, S., and Masihi, M., Free fall and controlled gravity drainage processes in fractured porous media: Laboratory and modelling investigation, Can. J. Chem. Eng., 2015, vol. 93, p. 2286.CrossRef Saedi, B., Ayatollahi, S., and Masihi, M., Free fall and controlled gravity drainage processes in fractured porous media: Laboratory and modelling investigation, Can. J. Chem. Eng., 2015, vol. 93, p. 2286.CrossRef
21.
22.
go back to reference Meirmanov, A.M., Mathematical Models for Poroelastic Flows, vol. 1 of Atlantis Studies in Differential Equations, Beijing: Atlantis, 2014. Meirmanov, A.M., Mathematical Models for Poroelastic Flows, vol. 1 of Atlantis Studies in Differential Equations, Beijing: Atlantis, 2014.
23.
go back to reference Meirmanov, A.M., Reiterated homogenization in the problems on filtration of underground liquids, Nauchn. Vedomosti Belgorod. Gos. Univ. Ser.: Mat. Fiz., 2012, no. 17 (136), pp. 178–193. Meirmanov, A.M., Reiterated homogenization in the problems on filtration of underground liquids, Nauchn. Vedomosti Belgorod. Gos. Univ. Ser.: Mat. Fiz., 2012, no. 17 (136), pp. 178–193.
24.
go back to reference Nikolaevskii, V.N., Mekhanika poristykh i treshchinovatykh sred (The Mechanics of Porous and Fractured Media), Moscow: Nedra, 1984. Nikolaevskii, V.N., Mekhanika poristykh i treshchinovatykh sred (The Mechanics of Porous and Fractured Media), Moscow: Nedra, 1984.
25.
go back to reference Scheidegger, A.E., The Physics of Flow through Porous Media, Toronto: Univ. Press, 1974.MATH Scheidegger, A.E., The Physics of Flow through Porous Media, Toronto: Univ. Press, 1974.MATH
Metadata
Title
Macroscopic Model of Two-Phase Compressible Flow in Double Porosity Media
Authors
M. B. Panfilov
Zh. D. Baishemirov
A. S. Berdyshev
Publication date
01-09-2020
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 7/2020
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S001546282007006X

Other articles of this Issue 7/2020

Fluid Dynamics 7/2020 Go to the issue

Premium Partners