Skip to main content
Top
Published in: Journal of Materials Science 6/2015

01-03-2015 | Original Paper

Magnetic-aligned, magnetite-filled epoxy composites with enhanced thermal conductivity

Authors: Karolina Gaska, Grzegorz Kmita, Andrzej Rybak, Robert Sekula, Kamil Goc, Czeslaw Kapusta

Published in: Journal of Materials Science | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the influence of magnetic field-assisted filler alignment technology on the morphology and the thermal conductivity of magnetite-filled epoxy composites. A magnetic field was applied during the solidification of the composite in order to change the position of the filler and its distribution in the polymer matrix. It is shown that the applied procedure leads to the filler being oriented along the direction of the magnetic field, and as a result, the thermal conductivity is improved by up to 120 % compared to a composite with randomly oriented filler obtained without the assistance of a magnetic field. This positive effect is caused by the appearance of conductive paths at a much lower content of the filler when the composite solidification is assisted by a magnetic field, relative to an equivalent isotropic sample. These morphological changes were confirmed by microscopic and X-ray microtomography imaging. The temperature dependences of thermal conductivity were also investigated over a broad temperature range for a magnetite-filled epoxy composite sample and compared to the bulk magnetite reference, showing that thermal behaviour of the magnetite-filled composite is stable, which is a promising result when considering the future application of the technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Filippakou MP, Karagiannopoulos C, Agoris DP, Bourkas PD (2001) Electrical contact overheating under short-circuit currents. Electr Power Syst Res 57:141–147CrossRef Filippakou MP, Karagiannopoulos C, Agoris DP, Bourkas PD (2001) Electrical contact overheating under short-circuit currents. Electr Power Syst Res 57:141–147CrossRef
2.
go back to reference Wong CP, Bollampally RS (1999) Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging. IEEE Trans Adv Packag 22:54–59CrossRef Wong CP, Bollampally RS (1999) Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging. IEEE Trans Adv Packag 22:54–59CrossRef
3.
go back to reference Garett KW, Rosenberg HM (1974) The thermal conductivity of epoxy-resin/powder composite materials. J Phys D Appl Phys 7:1247–1258CrossRef Garett KW, Rosenberg HM (1974) The thermal conductivity of epoxy-resin/powder composite materials. J Phys D Appl Phys 7:1247–1258CrossRef
4.
go back to reference Medina-Esquivel R. A. et al. Thermal characterization of composites made up of magnetically aligned carbonyl iron particles in a polyester resin matrix. J Appl Phys 2012;111:054906CrossRef Medina-Esquivel R. A. et al. Thermal characterization of composites made up of magnetically aligned carbonyl iron particles in a polyester resin matrix. J Appl Phys 2012;111:054906CrossRef
5.
go back to reference Scholz M-S et al (2013) Ultrasonic assembly of anisotropic short fibre reinforced composites. Ultrasonics 54:1015–1019CrossRef Scholz M-S et al (2013) Ultrasonic assembly of anisotropic short fibre reinforced composites. Ultrasonics 54:1015–1019CrossRef
6.
go back to reference Kim GH (2004) Electroactive polymer composites as a tactile sensor for biomedical applications. Macromol Res 12:564–572CrossRef Kim GH (2004) Electroactive polymer composites as a tactile sensor for biomedical applications. Macromol Res 12:564–572CrossRef
7.
go back to reference Kim GH, Shkel YM (2004) Polymeric composites tailored by electric field. J Mater Res 19:1164–1174CrossRef Kim GH, Shkel YM (2004) Polymeric composites tailored by electric field. J Mater Res 19:1164–1174CrossRef
8.
go back to reference Correa-Duarte MA, Grzelczak M et al (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109(41):19060–19063CrossRef Correa-Duarte MA, Grzelczak M et al (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109(41):19060–19063CrossRef
9.
go back to reference Camponeschi E, Vance R et al (2007) Properties of carbon nanotube-polymer composites aligned in a magnetic field. Carbon 45(10):2037–2046CrossRef Camponeschi E, Vance R et al (2007) Properties of carbon nanotube-polymer composites aligned in a magnetic field. Carbon 45(10):2037–2046CrossRef
10.
go back to reference Kimura T, Ago H et al (2002) Polymer composites of carbon nanotubes aligned by a magnetic field. Adv Mater 14(19):1380–1383CrossRef Kimura T, Ago H et al (2002) Polymer composites of carbon nanotubes aligned by a magnetic field. Adv Mater 14(19):1380–1383CrossRef
11.
go back to reference Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G (2010) Magnetically processed carbon nanotube/epoxy nanocomposites: morphology, thermal, and mechanical properties. Polymer 51:1614–1620CrossRef Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G (2010) Magnetically processed carbon nanotube/epoxy nanocomposites: morphology, thermal, and mechanical properties. Polymer 51:1614–1620CrossRef
12.
go back to reference Kim IT, Tannenbaum A, Tannenbaum R (2011) Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices. Carbon 49:54–61CrossRef Kim IT, Tannenbaum A, Tannenbaum R (2011) Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices. Carbon 49:54–61CrossRef
13.
go back to reference Zhao W, Wang H, Tang H, Chen G (2006) Facile preparation of epoxy-based composite with oriented graphite nanosheets. Polymer 47:8401–8405CrossRef Zhao W, Wang H, Tang H, Chen G (2006) Facile preparation of epoxy-based composite with oriented graphite nanosheets. Polymer 47:8401–8405CrossRef
15.
go back to reference Lin Z, Liu Y, Raghavan S, Moon K (2013) Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Interfaces 5:7633–7640CrossRef Lin Z, Liu Y, Raghavan S, Moon K (2013) Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Interfaces 5:7633–7640CrossRef
16.
go back to reference Erb RM, Libanori R et al (2012) Composites reinforced in three dimensions by using low magnetic fields. Science 335(6065):199–204CrossRef Erb RM, Libanori R et al (2012) Composites reinforced in three dimensions by using low magnetic fields. Science 335(6065):199–204CrossRef
17.
go back to reference Libanori R, Erb RM et al (2013) Mechanics of platelet-reinforced composites assembled using mechanical and magnetic stimuli. ACS Appl Mater Interfaces 5(21):10794–10805CrossRef Libanori R, Erb RM et al (2013) Mechanics of platelet-reinforced composites assembled using mechanical and magnetic stimuli. ACS Appl Mater Interfaces 5(21):10794–10805CrossRef
18.
go back to reference Erb RM, Sander JS et al (2013) Self-shaping composites with programmable bioinspired microstructures. Nature Commun 4:1712CrossRef Erb RM, Sander JS et al (2013) Self-shaping composites with programmable bioinspired microstructures. Nature Commun 4:1712CrossRef
19.
go back to reference Porter MM, Yeh M et al (2012) Magnetic freeze casting inspired by nature. Mater Sci Eng A 556:741–750CrossRef Porter MM, Yeh M et al (2012) Magnetic freeze casting inspired by nature. Mater Sci Eng A 556:741–750CrossRef
20.
go back to reference Sommer MR, Erb RM et al (2012) Injectable Materials with Magnetically Controlled Anisotropic Porosity. ACS Appl Mater Interfaces 4(10):5086–5091CrossRef Sommer MR, Erb RM et al (2012) Injectable Materials with Magnetically Controlled Anisotropic Porosity. ACS Appl Mater Interfaces 4(10):5086–5091CrossRef
21.
go back to reference Weidenfeller B, Hofer M, Schilling F (2002) Thermal and electrical properties of magnetite filled polymers. Compos A 33:1041–1053CrossRef Weidenfeller B, Hofer M, Schilling F (2002) Thermal and electrical properties of magnetite filled polymers. Compos A 33:1041–1053CrossRef
22.
go back to reference Physical Property Measurement System, Thermal Transport Option User Manual, Part Number 1684-100B, Quantum Design Corp, San Diego, USA. Physical Property Measurement System, Thermal Transport Option User Manual, Part Number 1684-100B, Quantum Design Corp, San Diego, USA.
23.
go back to reference Maldonado O (1992) Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32(10):908–912CrossRef Maldonado O (1992) Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32(10):908–912CrossRef
24.
go back to reference Tritt T (2004) Thermal conductivity: theory, properties, and applications. Kluwer Academic/Plenum Publishers, New YorkCrossRef Tritt T (2004) Thermal conductivity: theory, properties, and applications. Kluwer Academic/Plenum Publishers, New YorkCrossRef
25.
go back to reference Cheng SC, Vachon RI (1970) A technique for predicting the thermal conductivity of suspensions, emulsions and porous materials. Int J Heat Mass Transfer 13:537–546CrossRef Cheng SC, Vachon RI (1970) A technique for predicting the thermal conductivity of suspensions, emulsions and porous materials. Int J Heat Mass Transfer 13:537–546CrossRef
26.
go back to reference Droval G, Feller J-F, Salagnac P, Glouannec P (2006) Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites. Polym Adv Technol 17:732–745CrossRef Droval G, Feller J-F, Salagnac P, Glouannec P (2006) Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites. Polym Adv Technol 17:732–745CrossRef
27.
go back to reference Agari Y, Ueda A, Nagai S (1993) Thermal conductivity of a polymer composite. J Appl Polym Sci 49:1625–1634CrossRef Agari Y, Ueda A, Nagai S (1993) Thermal conductivity of a polymer composite. J Appl Polym Sci 49:1625–1634CrossRef
28.
go back to reference Agari Y, Tanaka M, Nagai S, Uno T (1987) Thermal conductivity of a polymer composite filled with mixtures of particles. J Appl Polym Sci 34:1429–1437CrossRef Agari Y, Tanaka M, Nagai S, Uno T (1987) Thermal conductivity of a polymer composite filled with mixtures of particles. J Appl Polym Sci 34:1429–1437CrossRef
29.
go back to reference Schwenk H et al (2000) Charge ordering and elastic constants in {Fe_{3-x}Zn_{x}O_{4}}. Eur Phys J B 13:491–494CrossRef Schwenk H et al (2000) Charge ordering and elastic constants in {Fe_{3-x}Zn_{x}O_{4}}. Eur Phys J B 13:491–494CrossRef
Metadata
Title
Magnetic-aligned, magnetite-filled epoxy composites with enhanced thermal conductivity
Authors
Karolina Gaska
Grzegorz Kmita
Andrzej Rybak
Robert Sekula
Kamil Goc
Czeslaw Kapusta
Publication date
01-03-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8809-8

Other articles of this Issue 6/2015

Journal of Materials Science 6/2015 Go to the issue

Premium Partners