Skip to main content
Erschienen in: Journal of Materials Science 15/2014

01.08.2014

Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets

verfasst von: Haiyan Yan, Yanxia Tang, Wei Long, Yongfei Li

Erschienen in: Journal of Materials Science | Ausgabe 15/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We developed highly aligned graphene nanosheets (GNSs) in epoxy composites with incorporating magnetic GNS–Fe3O4 hybrids under a magnetic field with the aim to take full advantage of the high inplane thermal conductivity of graphene. GNS–Fe3O4 hybrids were fabricated by a simple coprecipitation method, and their morphology, chemistry, and structure were characterized. GNS–Fe3O4 hybrids were found to be homogenously dispersed and well aligned through the direction of the magnetic field in the epoxy matrix, as confirmed by SEM observation and Raman spectra analysis. The resulting epoxy/GNS–Fe3O4 composites possessed high thermal conductivity in a parallel magnetic-alignment direction at low GNS–Fe3O4 loadings, which greatly outperformed the composites with randomly dispersed bare GNSs. The obtained results indicated that the magnetic alignment of magnetic-functionalized GNSs is an effective way for greatly improving the thermal conductivity of the graphene-based composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef
2.
Zurück zum Zitat Chung D (2001) Thermal interface materials. J Mater Eng Perform 10:56–59CrossRef Chung D (2001) Thermal interface materials. J Mater Eng Perform 10:56–59CrossRef
3.
Zurück zum Zitat Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
4.
Zurück zum Zitat Shahil KM, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef Shahil KM, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef
5.
Zurück zum Zitat Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 7:5114–5121CrossRef Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 7:5114–5121CrossRef
6.
Zurück zum Zitat Chu K, Jia C, Li W (2012) Effective thermal conductivity of graphene-based composites. Appl Phys Lett 101:121916CrossRef Chu K, Jia C, Li W (2012) Effective thermal conductivity of graphene-based composites. Appl Phys Lett 101:121916CrossRef
7.
Zurück zum Zitat Shahil KM, Balandin AA (2012) Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867CrossRef Shahil KM, Balandin AA (2012) Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867CrossRef
8.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
9.
Zurück zum Zitat Chu K, Wu Q, Jia C, Liang X, Nie J, Tian W et al (2010) Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos Sci Technol 70:298–304CrossRef Chu K, Wu Q, Jia C, Liang X, Nie J, Tian W et al (2010) Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos Sci Technol 70:298–304CrossRef
10.
Zurück zum Zitat Zhu Y-F, Ma C, Zhang W, Zhang R-P, Koratkar N, Liang J (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105:054316–054319CrossRef Zhu Y-F, Ma C, Zhang W, Zhang R-P, Koratkar N, Liang J (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105:054316–054319CrossRef
11.
Zurück zum Zitat Park JG, Cheng Q, Lu J, Bao J, Li S, Tian Y et al (2012) Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization. Carbon 50:2083–2090CrossRef Park JG, Cheng Q, Lu J, Bao J, Li S, Tian Y et al (2012) Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization. Carbon 50:2083–2090CrossRef
12.
Zurück zum Zitat Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112CrossRef Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112CrossRef
13.
Zurück zum Zitat Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim J-K (2012) Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J Mater Chem 22:12709–12717CrossRef Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim J-K (2012) Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J Mater Chem 22:12709–12717CrossRef
14.
Zurück zum Zitat Yousefi N, Lin X, Zheng Q, Shen X, Pothnis JR, Jia J et al (2013) Simultaneous 〈i〉 in situ 〈/i〉 reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59:406–417CrossRef Yousefi N, Lin X, Zheng Q, Shen X, Pothnis JR, Jia J et al (2013) Simultaneous 〈i〉 in situ 〈/i〉 reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59:406–417CrossRef
15.
Zurück zum Zitat Song W-L, Cao M-S, Lu M–M, Yang J, Ju H-F, Hou Z-L et al (2013) Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology 24:115708CrossRef Song W-L, Cao M-S, Lu M–M, Yang J, Ju H-F, Hou Z-L et al (2013) Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology 24:115708CrossRef
16.
Zurück zum Zitat Babaei H, Keblinski P, Khodadadi J (2013) Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. Int J Heat Mass Transf 58:209–216CrossRef Babaei H, Keblinski P, Khodadadi J (2013) Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. Int J Heat Mass Transf 58:209–216CrossRef
17.
Zurück zum Zitat Tolbert SH, Firouzi A, Stucky GD, Chmelka BF (1997) Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278:264–268CrossRef Tolbert SH, Firouzi A, Stucky GD, Chmelka BF (1997) Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278:264–268CrossRef
18.
Zurück zum Zitat Erb RM, Libanori R, Rothfuchs N, Studart AR (2012) Composites reinforced in three dimensions by using low magnetic fields. Science 335:199–204CrossRef Erb RM, Libanori R, Rothfuchs N, Studart AR (2012) Composites reinforced in three dimensions by using low magnetic fields. Science 335:199–204CrossRef
19.
Zurück zum Zitat Zhou K, Zhu Y, Yang X, Li C (2010) One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J Chem 34:2950–2955CrossRef Zhou K, Zhu Y, Yang X, Li C (2010) One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J Chem 34:2950–2955CrossRef
20.
Zurück zum Zitat Liang J, Xu Y, Sui D, Zhang L, Huang Y, Ma Y et al (2010) Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J Phys Chem C 114:17465–17471CrossRef Liang J, Xu Y, Sui D, Zhang L, Huang Y, Ma Y et al (2010) Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J Phys Chem C 114:17465–17471CrossRef
21.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
22.
Zurück zum Zitat Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
23.
Zurück zum Zitat Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X et al (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80:333–341CrossRef Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X et al (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80:333–341CrossRef
24.
Zurück zum Zitat Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef
25.
Zurück zum Zitat Aurbach D, Ein-Eli Y (1995) The study of Li–graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction. J Electrochem Soc 142:1746–1752CrossRef Aurbach D, Ein-Eli Y (1995) The study of Li–graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction. J Electrochem Soc 142:1746–1752CrossRef
26.
Zurück zum Zitat Cole H (1970) Bragg’s law and energy sensitive detectors. J Appl Crystallogr 3:405–406CrossRef Cole H (1970) Bragg’s law and energy sensitive detectors. J Appl Crystallogr 3:405–406CrossRef
27.
Zurück zum Zitat Wan J, Cai W, Feng J, Meng X, Liu E (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17:1188–1192CrossRef Wan J, Cai W, Feng J, Meng X, Liu E (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17:1188–1192CrossRef
28.
Zurück zum Zitat Liu H, Yang W (2011) Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ Sci 4:4000–4008CrossRef Liu H, Yang W (2011) Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ Sci 4:4000–4008CrossRef
29.
Zurück zum Zitat Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978CrossRef Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978CrossRef
30.
Zurück zum Zitat Paredes J, Villar-Rodil S, Martinez-Alonso A, Tascon J (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef Paredes J, Villar-Rodil S, Martinez-Alonso A, Tascon J (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564CrossRef
31.
Zurück zum Zitat Grosvenor A, Kobe B, Biesinger M, McIntyre N (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574CrossRef Grosvenor A, Kobe B, Biesinger M, McIntyre N (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574CrossRef
32.
Zurück zum Zitat Fujii T, De Groot F, Sawatzky G, Voogt F, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195CrossRef Fujii T, De Groot F, Sawatzky G, Voogt F, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195CrossRef
33.
Zurück zum Zitat Li B, Cao H, Shao J, Qu M, Warner JH (2011) Superparamagnetic Fe3O4 nanocrystals@ graphene composites for energy storage devices. J Mater Chem 21:5069–5075CrossRef Li B, Cao H, Shao J, Qu M, Warner JH (2011) Superparamagnetic Fe3O4 nanocrystals@ graphene composites for energy storage devices. J Mater Chem 21:5069–5075CrossRef
34.
Zurück zum Zitat Fan X, Jiao G, Zhao W, Jin P, Li X (2013) Magnetic Fe3O4–graphene composites as targeted drug nanocarriers for pH-activated release. Nanoscale 5:1143–1152CrossRef Fan X, Jiao G, Zhao W, Jin P, Li X (2013) Magnetic Fe3O4–graphene composites as targeted drug nanocarriers for pH-activated release. Nanoscale 5:1143–1152CrossRef
35.
Zurück zum Zitat Duesberg G, Loa I, Burghard M, Syassen K, Roth S (2000) Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys Rev Lett 85:5436CrossRef Duesberg G, Loa I, Burghard M, Syassen K, Roth S (2000) Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys Rev Lett 85:5436CrossRef
36.
Zurück zum Zitat Gommans H, Alldredge J, Tashiro H, Park J, Magnuson J, Rinzler A (2000) Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy. J Appl Phys 88:2509–2514CrossRef Gommans H, Alldredge J, Tashiro H, Park J, Magnuson J, Rinzler A (2000) Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy. J Appl Phys 88:2509–2514CrossRef
37.
Zurück zum Zitat Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRef Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRef
38.
Zurück zum Zitat Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef
39.
Zurück zum Zitat Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53:471–480CrossRef Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53:471–480CrossRef
40.
Zurück zum Zitat Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692CrossRef Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692CrossRef
41.
Zurück zum Zitat Chu K, Li W, Jia C, Tang F (2012) Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets. Appl Phys Lett 101:211903CrossRef Chu K, Li W, Jia C, Tang F (2012) Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets. Appl Phys Lett 101:211903CrossRef
42.
Zurück zum Zitat Lin Z, Liu Y, Raghavan S, Moon K-S, Sitaraman SK, Wong C-P (2013) Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Interfaces 5:7633–7640CrossRef Lin Z, Liu Y, Raghavan S, Moon K-S, Sitaraman SK, Wong C-P (2013) Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Interfaces 5:7633–7640CrossRef
43.
Zurück zum Zitat Terao T, Zhi C, Bando Y, Mitome M, Tang C, Golberg D (2010) Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J Phys Chem C 114:4340–4344CrossRef Terao T, Zhi C, Bando Y, Mitome M, Tang C, Golberg D (2010) Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J Phys Chem C 114:4340–4344CrossRef
44.
Zurück zum Zitat Yan Z, Liu G, Khan JM, Balandin AA (2012) Graphene quilts for thermal management of high-power GaN transistors. Nat Commun 3:827CrossRef Yan Z, Liu G, Khan JM, Balandin AA (2012) Graphene quilts for thermal management of high-power GaN transistors. Nat Commun 3:827CrossRef
45.
Zurück zum Zitat Nika D, Ghosh S, Pokatilov E, Balandin A (2009) Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl Phys Lett 94:203103CrossRef Nika D, Ghosh S, Pokatilov E, Balandin A (2009) Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl Phys Lett 94:203103CrossRef
Metadaten
Titel
Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets
verfasst von
Haiyan Yan
Yanxia Tang
Wei Long
Yongfei Li
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 15/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8198-z

Weitere Artikel der Ausgabe 15/2014

Journal of Materials Science 15/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.