Skip to main content
Top
Published in: Physics of Metals and Metallography 7/2022

01-07-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetic and Electrical Properties of Co2MnZ (Z = Al, Si, Ga, Ge, Sn) Heusler Compounds

Authors: A. A. Semiannikova, Yu. A. Perevozchikova, P. S. Korenistov, E. B. Marchenkova, A. V. Korolev, V. V. Marchenkov

Published in: Physics of Metals and Metallography | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Temperature dependences of electrical resistivity of Co2MnZ (Z = Al, Si, Ga, Ge, Sn) Heusler alloys were measured in a temperature range of 78–300 K; their magnetization was measured at 5 and 300 K in fields up to 30 kOe. It was found that, for the Co2MnAl and Co2MnGa alloys, the Mooij rule [Mooij J.H. Phys. Stat. Sol. (a). 1973. V. 17. P. 521] does not hold. A correlation between electronic and magnetic characteristics of the Co2MnZ alloys and atomic number of element Z is found.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39, 1 (2011).CrossRef T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39, 1 (2011).CrossRef
2.
go back to reference K. Manna, Y. Sun, L. Muechler, J. Kübler, C. Felser, “Heusler, Weyl, and Berry,” Nat. Rev. Mater. 3, 244 (2018).CrossRef K. Manna, Y. Sun, L. Muechler, J. Kübler, C. Felser, “Heusler, Weyl, and Berry,” Nat. Rev. Mater. 3, 244 (2018).CrossRef
3.
go back to reference K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi, H. Sukegawa, S. Mitani, and A. Hirohata, “Heusler alloys for spintronic devices: Review on recent development and future perspectivesm,” Sci. Technol. Adv. Mater. 22, 235 (2021).CrossRef K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi, H. Sukegawa, S. Mitani, and A. Hirohata, “Heusler alloys for spintronic devices: Review on recent development and future perspectivesm,” Sci. Technol. Adv. Mater. 22, 235 (2021).CrossRef
4.
go back to reference V. D. Buchel’nikov and V. V. Sokolovskiy, “Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys,” Phys. Met. Metallogr. 112, 633 (2011).CrossRef V. D. Buchel’nikov and V. V. Sokolovskiy, “Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys,” Phys. Met. Metallogr. 112, 633 (2011).CrossRef
5.
go back to reference R. L. Wang, J. B. Yan, L. S. Xu, V. V. Marchenkov, S. S. Chen, S. L. Tang, and C. P. Yang, “Effect of Al doping on the martensitic transition and magnetic entropy change in Ni–Mn–Sn alloys,” Solid State Commun. 151, 1196 (2011).CrossRef R. L. Wang, J. B. Yan, L. S. Xu, V. V. Marchenkov, S. S. Chen, S. L. Tang, and C. P. Yang, “Effect of Al doping on the martensitic transition and magnetic entropy change in Ni–Mn–Sn alloys,” Solid State Commun. 151, 1196 (2011).CrossRef
6.
go back to reference V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616 (2019).CrossRef V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616 (2019).CrossRef
7.
go back to reference T. Klimczuk, C. H. Wang, K. Gofryk, F. Ronning, J. Winterlik, G. H. Fecher, J.-C. Griveau, E. Colineau, C. Felser, J. D. Thompson, D. J. Safarik, and R. J. Cava, “Superconductivity in the Heusler family of intermetallics,” Phys. Rev. B 85, 174505 (2012).CrossRef T. Klimczuk, C. H. Wang, K. Gofryk, F. Ronning, J. Winterlik, G. H. Fecher, J.-C. Griveau, E. Colineau, C. Felser, J. D. Thompson, D. J. Safarik, and R. J. Cava, “Superconductivity in the Heusler family of intermetallics,” Phys. Rev. B 85, 174505 (2012).CrossRef
8.
go back to reference Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, “Semiconductorlike behavior of electrical resistivity in Heusler-type Fe2VAl compound,” Phys. Rev. Lett. 79, 1909 (1997).CrossRef Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, “Semiconductorlike behavior of electrical resistivity in Heusler-type Fe2VAl compound,” Phys. Rev. Lett. 79, 1909 (1997).CrossRef
9.
go back to reference S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, “Tunable multifunctional topological insulators in ternary Heusler compounds,” Nat. Mater. 9, 541 (2010).CrossRef S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, “Tunable multifunctional topological insulators in ternary Heusler compounds,” Nat. Mater. 9, 541 (2010).CrossRef
10.
go back to reference B. Yan and A. de Visser, “Half-Heusler topological insulators,” MRS Bull. 39, 859 (2014).CrossRef B. Yan and A. de Visser, “Half-Heusler topological insulators,” MRS Bull. 39, 859 (2014).CrossRef
11.
go back to reference V. Yu. Irkhin and M. I. Katsnel’son, “Semimetallic ferromagnetics,” Usp. Fiz. Nauk 164, 705 (1994).CrossRef V. Yu. Irkhin and M. I. Katsnel’son, “Semimetallic ferromagnetics,” Usp. Fiz. Nauk 164, 705 (1994).CrossRef
12.
go back to reference M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. De Groot, “Half-metallic ferromagnets: From band structure to many-body effects,” Rev. Mod. Phys. 80, 315 (2008).CrossRef M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. De Groot, “Half-metallic ferromagnets: From band structure to many-body effects,” Rev. Mod. Phys. 80, 315 (2008).CrossRef
13.
go back to reference V. V. Marchenkov, N. I. Kourov, and V. Yu. Irkhin, “Half-metallic ferromagnets and spin gapless semiconductors,” Phys. Met. Metallogr. 119, 64 (2018).CrossRef V. V. Marchenkov, N. I. Kourov, and V. Yu. Irkhin, “Half-metallic ferromagnets and spin gapless semiconductors,” Phys. Met. Metallogr. 119, 64 (2018).CrossRef
14.
go back to reference V. V. Marchenkov and V. Yu. Irkhin, “Half-metallic ferromagnets, spin gapless semiconductors, and topological semimetals based on heusler alloys: Theory and experiment,” Phys. Met. Metallogr. 122, 1133 (2021).CrossRef V. V. Marchenkov and V. Yu. Irkhin, “Half-metallic ferromagnets, spin gapless semiconductors, and topological semimetals based on heusler alloys: Theory and experiment,” Phys. Met. Metallogr. 122, 1133 (2021).CrossRef
15.
go back to reference X. L. Wang, “Proposal for a new class of materials: Spin gapless semiconductors,” Phys. Rev. Lett. 100, 156404 (2008).CrossRef X. L. Wang, “Proposal for a new class of materials: Spin gapless semiconductors,” Phys. Rev. Lett. 100, 156404 (2008).CrossRef
16.
go back to reference X. T. Wang, Z. X. Cheng, J. L. Wang, X. L. Wang, and G. D. Liu, “Recent advances in the Heusler based spin-gapless semiconductors,” J. Mater. Chem. C 4, 7176 (2016).CrossRef X. T. Wang, Z. X. Cheng, J. L. Wang, X. L. Wang, and G. D. Liu, “Recent advances in the Heusler based spin-gapless semiconductors,” J. Mater. Chem. C 4, 7176 (2016).CrossRef
17.
go back to reference N. A. Viglin, V. V. Ustinov, S. O. Demokritov, A. O. Shorikov, N. G. Bebenin, V. M. Tsvelikhovskaya, T. N. Pavlov, and E. I. Patrakov, “Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices,” Phys. Rev. B 96, 235303 (2017).CrossRef N. A. Viglin, V. V. Ustinov, S. O. Demokritov, A. O. Shorikov, N. G. Bebenin, V. M. Tsvelikhovskaya, T. N. Pavlov, and E. I. Patrakov, “Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices,” Phys. Rev. B 96, 235303 (2017).CrossRef
18.
go back to reference V. V. Osipov and A. M. Bratkovsky, “A class of spin injection-precession ultrafast nanodevices,” Appl. Phys. Lett. 84, 2118 (2004).CrossRef V. V. Osipov and A. M. Bratkovsky, “A class of spin injection-precession ultrafast nanodevices,” Appl. Phys. Lett. 84, 2118 (2004).CrossRef
19.
go back to reference G. H. Fecher and C. Felser, “Substituting the main group element in cobalt–iron based Heusler alloys: Co2FeAl1 – xSix,” J. Phys. D: Appl. Phys. 40, 1582 (2007).CrossRef G. H. Fecher and C. Felser, “Substituting the main group element in cobalt–iron based Heusler alloys: Co2FeAl1 – xSix,” J. Phys. D: Appl. Phys. 40, 1582 (2007).CrossRef
20.
go back to reference V. V. Marchenkov, Yu. A. Perevozchikova, N. I. Kourov, V. Yu. Irkhin, M. Eisterer, and T. Gao, “Peculiarities of the electronic transport in half-metallic Co-based Heusler alloys,” J. Magn. Magn. Mater. 459, 211 (2018).CrossRef V. V. Marchenkov, Yu. A. Perevozchikova, N. I. Kourov, V. Yu. Irkhin, M. Eisterer, and T. Gao, “Peculiarities of the electronic transport in half-metallic Co-based Heusler alloys,” J. Magn. Magn. Mater. 459, 211 (2018).CrossRef
21.
go back to reference V. V. Marchenkov, V. Yu. Irkhin, Yu. A. Perevozchikova, P. B. Terent’ev, A. A. Semyannikova, E. B. Marchenkova, and M. Eisterer, “Kinetic properties and half-metallic magnetism in Mn2YAl Heusler alloys,” J. Exp. Theor. Phys. 128, 919 (2019).CrossRef V. V. Marchenkov, V. Yu. Irkhin, Yu. A. Perevozchikova, P. B. Terent’ev, A. A. Semyannikova, E. B. Marchenkova, and M. Eisterer, “Kinetic properties and half-metallic magnetism in Mn2YAl Heusler alloys,” J. Exp. Theor. Phys. 128, 919 (2019).CrossRef
22.
go back to reference Yu. A. Perevozchikova, A. A. Semyannikova, A. N. Domozhirova, P. B. Terent’ev, E. B. Marchenkova, E. I. Patrakov, M. Eisterer, P. S. Korenistov, and V. V. Marchenkov, “Experimental observation of anomalies in the electrical, magnetic, and galvanomagnetic properties of cobalt-based Heusler alloys with varying transition elements,” Low Temp. Phys. 45, 789 (2019).CrossRef Yu. A. Perevozchikova, A. A. Semyannikova, A. N. Domozhirova, P. B. Terent’ev, E. B. Marchenkova, E. I. Patrakov, M. Eisterer, P. S. Korenistov, and V. V. Marchenkov, “Experimental observation of anomalies in the electrical, magnetic, and galvanomagnetic properties of cobalt-based Heusler alloys with varying transition elements,” Low Temp. Phys. 45, 789 (2019).CrossRef
23.
go back to reference M. Jourdan, J. Minar, J. Braun, A. Kronenberg, S. Chadov, B. Balke, A. Gloskovskii, M. Kolbe, H. J. Elmers, G. Schoenhense, H. Ebert, C. Felser, and M. Klaeui, “Direct observation of half-metallicity in the Heusler compound Co2MnSi,” Nat. Commun. 5, 3974 (2014).CrossRef M. Jourdan, J. Minar, J. Braun, A. Kronenberg, S. Chadov, B. Balke, A. Gloskovskii, M. Kolbe, H. J. Elmers, G. Schoenhense, H. Ebert, C. Felser, and M. Klaeui, “Direct observation of half-metallicity in the Heusler compound Co2MnSi,” Nat. Commun. 5, 3974 (2014).CrossRef
24.
go back to reference J. H. Mooij, “Electrical conduction in concentrated disordered transition metal alloys,” Phys. Status Solidi 17, 521 (1973).CrossRef J. H. Mooij, “Electrical conduction in concentrated disordered transition metal alloys,” Phys. Status Solidi 17, 521 (1973).CrossRef
25.
go back to reference A. Candan, G. Ugur, Z. Charifi, H. Baaziz, and M. R. Ellialtıoglu, “Electronic structure and vibrational properties in cobalt-based full-Heusler compounds: A first principle study of Co2MnX (X = Si, Ge, Al, Ga),” J. Alloys Compd. 560, 215 (2013).CrossRef A. Candan, G. Ugur, Z. Charifi, H. Baaziz, and M. R. Ellialtıoglu, “Electronic structure and vibrational properties in cobalt-based full-Heusler compounds: A first principle study of Co2MnX (X = Si, Ge, Al, Ga),” J. Alloys Compd. 560, 215 (2013).CrossRef
26.
go back to reference M. Singh, H. S. Saini, J. Thakur, and M. K. Kashyap, “Enhancement of spin polarization via Fermi level tuning in Co2MnSn1 – xSbx (x = 0, 0.25. 0.5, 0.75, 1) Heusler alloys,” AIP Conf. Proc. 1591, 1606 (2014).CrossRef M. Singh, H. S. Saini, J. Thakur, and M. K. Kashyap, “Enhancement of spin polarization via Fermi level tuning in Co2MnSn1 – xSbx (x = 0, 0.25. 0.5, 0.75, 1) Heusler alloys,” AIP Conf. Proc. 1591, 1606 (2014).CrossRef
27.
go back to reference P. J. Webster and K. R. A. Ziebeck, in Alloys and Compounds of d-Elements with Main Group Elements, Part 2, Ed. by H. R. J. Wijn, Landolt-Bornstein (Berlin, Springer, 1988), p. 75, Vol. 19/c. P. J. Webster and K. R. A. Ziebeck, in Alloys and Compounds of d-Elements with Main Group Elements, Part 2, Ed. by H. R. J. Wijn, Landolt-Bornstein (Berlin, Springer, 1988), p. 75, Vol. 19/c.
28.
go back to reference K. H. J. Buschow and P. G. van Engen, “Magnetic and magneto-optical properties of Heusler alloys based on aluminium and gallium,” J. Magn. Magn. Mater. 25, 90 (1981).CrossRef K. H. J. Buschow and P. G. van Engen, “Magnetic and magneto-optical properties of Heusler alloys based on aluminium and gallium,” J. Magn. Magn. Mater. 25, 90 (1981).CrossRef
29.
go back to reference N. I. Kourov, V. V. Marchenkov, K. A. Belozerova, and Kh. V. Veber, “Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) Heusler alloys,” J. Exp. Theor. Phys. 121, 844 (2015).CrossRef N. I. Kourov, V. V. Marchenkov, K. A. Belozerova, and Kh. V. Veber, “Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) Heusler alloys,” J. Exp. Theor. Phys. 121, 844 (2015).CrossRef
30.
go back to reference S. Ouardi, G. H. Fecher, B. Balke, A. Beleanu, X. Kozina, G. Stryganyuk, and C. Felser, “Electronic and crystallographic structure, hard X-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe,” Phys. Rev. B 84, 155122 (2011).CrossRef S. Ouardi, G. H. Fecher, B. Balke, A. Beleanu, X. Kozina, G. Stryganyuk, and C. Felser, “Electronic and crystallographic structure, hard X-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe,” Phys. Rev. B 84, 155122 (2011).CrossRef
Metadata
Title
Magnetic and Electrical Properties of Co2MnZ (Z = Al, Si, Ga, Ge, Sn) Heusler Compounds
Authors
A. A. Semiannikova
Yu. A. Perevozchikova
P. S. Korenistov
E. B. Marchenkova
A. V. Korolev
V. V. Marchenkov
Publication date
01-07-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 7/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2207016X

Other articles of this Issue 7/2022

Physics of Metals and Metallography 7/2022 Go to the issue

ELECTRICAL AND MAGNETIC PROPERTIES

Electronic Phase Separation in Magnetic Materials