Skip to main content
Top
Published in: Colloid and Polymer Science 9/2014

01-09-2014 | Invited Review

Magnetic polymer nanocomposites for environmental and biomedical applications

Authors: Susheel Kalia, Sarita Kango, Amit Kumar, Yuvaraj Haldorai, Bandna Kumari, Rajesh Kumar

Published in: Colloid and Polymer Science | Issue 9/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hybrid nanomaterials have received voluminous interest due to the combination of unique properties of organic and inorganic component in one material. In this class, magnetic polymer nanocomposites are of particular interest because of the combination of excellent magnetic properties, stability, and good biocompatibility. Organic–inorganic magnetic nanocomposites can be prepared by in situ, ex situ, microwave reflux, co-precipitation, melt blending, and ceramic–glass processing and plasma polymerization techniques. These nanocomposites have been exploited for in vivo imaging, as superparamagnetic or negative contrast agents, drug carriers, heavy metal adsorbents, and magnetically recoverable photocatalysts for degradation of organic pollutants. This review article is mainly focused on fabrication of magnetic polymer nanocomposites and their applications. Different types of magnetic nanoparticles, methods of their synthesis, properties, and applications have also been reviewed briefly. The review also provides detailed insight into various types of magnetic nanocomposites and their synthesis. Diverse applications of magnetic nanocomposites including environmental and biomedical uses have been discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251 McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251
2.
go back to reference Maleki H, Simchi A, Imami M, Costa BFO (2012) Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. J Magn Magn Mater 324:3997–4005 Maleki H, Simchi A, Imami M, Costa BFO (2012) Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. J Magn Magn Mater 324:3997–4005
3.
go back to reference Coey JMD (1999) Whither magnetic materials? J Magn Magn Mater 196–197:1–7 Coey JMD (1999) Whither magnetic materials? J Magn Magn Mater 196–197:1–7
4.
go back to reference Shull RD, Bennett LH (1992) Nanocomposite magnetic materials. Nanostruct Mater 1:83–88 Shull RD, Bennett LH (1992) Nanocomposite magnetic materials. Nanostruct Mater 1:83–88
5.
go back to reference Lu A-H, Schmidt W, Matoussevitch N, Bonnemann HB, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F (2004) Nanoengineering of a magnetically separable hydrogenation. Angew Chem Int Ed 43:4303–4306 Lu A-H, Schmidt W, Matoussevitch N, Bonnemann HB, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F (2004) Nanoengineering of a magnetically separable hydrogenation. Angew Chem Int Ed 43:4303–4306
6.
go back to reference Zhu J, Wei S, Chen M, Gu H, Rapole SB, Pallavkar S, Ho TC, Hopper J, Guo Z (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467 Zhu J, Wei S, Chen M, Gu H, Rapole SB, Pallavkar S, Ho TC, Hopper J, Guo Z (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467
7.
go back to reference Gupta S, Ranjit R, Mitra C, Raychaudhuri P, Pinto R (2001) Enhanced room-temperature magnetoresistance in La0.7 Sr0.3 MnO3-glass composites. Appl Phys Lett 78:362–364 Gupta S, Ranjit R, Mitra C, Raychaudhuri P, Pinto R (2001) Enhanced room-temperature magnetoresistance in La0.7 Sr0.3 MnO3-glass composites. Appl Phys Lett 78:362–364
8.
go back to reference Huang Y-H, Chen X, Wang Z-M, Liao C-S, Yan C-H, Zhao H-W, Shen B-G (2002) Enhanced magnetoresistance in granular La2/3Ca1/3MnO3 /polymer composites. J Appl Phys 91:7733–7735 Huang Y-H, Chen X, Wang Z-M, Liao C-S, Yan C-H, Zhao H-W, Shen B-G (2002) Enhanced magnetoresistance in granular La2/3Ca1/3MnO3 /polymer composites. J Appl Phys 91:7733–7735
9.
go back to reference Lu A-H, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244 Lu A-H, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244
10.
go back to reference Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261 Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261
11.
go back to reference Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501 Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501
12.
go back to reference Maicas M, Sanz M, Cui H, Aroca C, Sanchez P (2010) Magnetic properties and morphology of Ni nanoparticles synthesized in gas phase. J Magn Magn Mater 322:3485–3489 Maicas M, Sanz M, Cui H, Aroca C, Sanchez P (2010) Magnetic properties and morphology of Ni nanoparticles synthesized in gas phase. J Magn Magn Mater 322:3485–3489
13.
go back to reference Ely TO, Amiens C, Chaudret B (1999) Synthesis of nickel nanoparticles: influence of aggregation induced by modification of poly(vinyl pyrrolidone) chain length on their magnetic properties. Chem Mater 11:526–529 Ely TO, Amiens C, Chaudret B (1999) Synthesis of nickel nanoparticles: influence of aggregation induced by modification of poly(vinyl pyrrolidone) chain length on their magnetic properties. Chem Mater 11:526–529
14.
go back to reference Osuna J, de Caro D, Amiens C, Chaudret B (1996) Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor. J Phys Chem 100:14571–14574 Osuna J, de Caro D, Amiens C, Chaudret B (1996) Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor. J Phys Chem 100:14571–14574
15.
go back to reference Cornell RM, Schwertmann U (2003) Introduction to the iron oxides. In: The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, pp 1–7 Cornell RM, Schwertmann U (2003) Introduction to the iron oxides. In: The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, pp 1–7
16.
go back to reference Goldman A (1990) Modern ferrite technology. Van Nostrand Reinhold, New York Goldman A (1990) Modern ferrite technology. Van Nostrand Reinhold, New York
17.
go back to reference Tilley RJD (2004) Understanding solids: the science of materials. John Wiley and Sons Ltd., Chichester, p 376 Tilley RJD (2004) Understanding solids: the science of materials. John Wiley and Sons Ltd., Chichester, p 376
18.
go back to reference Winkler G (1971) Crystallography, chemistry and technology of ferrites. In: Smith J (ed) Magnetic properties of materials. McGraw-Hill, New York Winkler G (1971) Crystallography, chemistry and technology of ferrites. In: Smith J (ed) Magnetic properties of materials. McGraw-Hill, New York
19.
go back to reference Spaldin N (2003) Magnetic materials: fundamentals and device applications. Cambridge University Press, Cambridge Spaldin N (2003) Magnetic materials: fundamentals and device applications. Cambridge University Press, Cambridge
20.
go back to reference Bragg WH (1915) The structure of magnetite and the spinels. Nature 95:561 Bragg WH (1915) The structure of magnetite and the spinels. Nature 95:561
21.
go back to reference Bragg WH (1915) The structure of the spinel group of crystals. Phil Mag 30:305–315 Bragg WH (1915) The structure of the spinel group of crystals. Phil Mag 30:305–315
22.
go back to reference Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Nanomedicine Nanobiotechnol 1:299–310 Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Nanomedicine Nanobiotechnol 1:299–310
23.
go back to reference Mathew DS, Juang RS (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65 Mathew DS, Juang RS (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65
24.
go back to reference Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558 Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558
25.
go back to reference Pollert E, Veverka P, Veverka M, Kaman O, Ziveta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog Solid State Chem 37:1–14 Pollert E, Veverka P, Veverka M, Kaman O, Ziveta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog Solid State Chem 37:1–14
26.
go back to reference Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112:14470–14481 Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112:14470–14481
27.
go back to reference Gopinadhan K, Kashyap SC, Pandya DK, Chaudhary S (2007) High temperature ferromagnetism in Mn-doped SnO2 nanocrystalline thin films. J Appl Phys 102:113513–113518 Gopinadhan K, Kashyap SC, Pandya DK, Chaudhary S (2007) High temperature ferromagnetism in Mn-doped SnO2 nanocrystalline thin films. J Appl Phys 102:113513–113518
28.
go back to reference Vadivel K, Arivazhagan V, Rajesh S (2011) Mn-doped SnO2 semiconducting magnetic thin films prepared by spray pyrolysis method. Int J Sci Eng Res 2 Vadivel K, Arivazhagan V, Rajesh S (2011) Mn-doped SnO2 semiconducting magnetic thin films prepared by spray pyrolysis method. Int J Sci Eng Res 2
29.
go back to reference Kant KM, Sethupathi K, Rao MSR (2004) Magnetic properties of 4f element doped SnO2. International Symposium of Research Students on Materials Science and Engineering, ISRS-2004, December 20–22, Chennai, India. Technical Proceedings Kant KM, Sethupathi K, Rao MSR (2004) Magnetic properties of 4f element doped SnO2. International Symposium of Research Students on Materials Science and Engineering, ISRS-2004, December 20–22, Chennai, India. Technical Proceedings
30.
go back to reference Santi M, Jakkapon S, Chunpen T, Jutharatana K (2006) Magnetic behavior of nanocrystalline powders of Co-doped ZnO diluted magnetic semiconductors synthesized by polymerizable precursor method. J Magn Magn Mater 301:422–432 Santi M, Jakkapon S, Chunpen T, Jutharatana K (2006) Magnetic behavior of nanocrystalline powders of Co-doped ZnO diluted magnetic semiconductors synthesized by polymerizable precursor method. J Magn Magn Mater 301:422–432
31.
go back to reference Lakshmi YK, Srinivas K, Sreedhar B, Raja MM, Vithal M, Reddy PV (2009) Structural, optical, and magnetic properties of nanocrystalline Zn0.9Co0.1O-based diluted magnetic semiconductors. Mater Chem Phys 113:749–755 Lakshmi YK, Srinivas K, Sreedhar B, Raja MM, Vithal M, Reddy PV (2009) Structural, optical, and magnetic properties of nanocrystalline Zn0.9Co0.1O-based diluted magnetic semiconductors. Mater Chem Phys 113:749–755
32.
go back to reference Jiang Y, Wang W, Jing C, Cao C, Chu J (2011) Sol–gel synthesis, structure and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Mater Sci Eng B 176:1301–1306 Jiang Y, Wang W, Jing C, Cao C, Chu J (2011) Sol–gel synthesis, structure and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Mater Sci Eng B 176:1301–1306
33.
go back to reference Li X, Wu S, Hu P, Xing X, Liu Y, Yu Y, Yang M, Lu J, Li S, Liu W (2009) Structures and magnetic properties of p-type Mn:TiO2 dilute magnetic semiconductor thin films. J Appl Phys 106:043913(1)–043913(5) Li X, Wu S, Hu P, Xing X, Liu Y, Yu Y, Yang M, Lu J, Li S, Liu W (2009) Structures and magnetic properties of p-type Mn:TiO2 dilute magnetic semiconductor thin films. J Appl Phys 106:043913(1)–043913(5)
34.
go back to reference Gan′shina EA, Granovsky AB, Orlov AF, Perov NS, Vashuk MV (2009) Magneto-optical spectroscopy of diluted magnetic oxides TiO2-δ:Co. J Magn Magn Mater 321:723–725 Gan′shina EA, Granovsky AB, Orlov AF, Perov NS, Vashuk MV (2009) Magneto-optical spectroscopy of diluted magnetic oxides TiO2-δ:Co. J Magn Magn Mater 321:723–725
35.
go back to reference Ianculescu A, Gheorghiu FP, Postolache P, Oprea O, Mitoseriu L (2010) The role of doping on structural and functional properties of BiFe1-XMnXO3 magnetoelectric ceramics. J Alloys Compd 504:420–426 Ianculescu A, Gheorghiu FP, Postolache P, Oprea O, Mitoseriu L (2010) The role of doping on structural and functional properties of BiFe1-XMnXO3 magnetoelectric ceramics. J Alloys Compd 504:420–426
36.
go back to reference Gingasu D, Oprea O, Mindru I, Culita DC, Patron L (2011) Alkali earth metal indates synthesized by precursor method. Dig J Nanomater Biostruct 6:1215–1226 Gingasu D, Oprea O, Mindru I, Culita DC, Patron L (2011) Alkali earth metal indates synthesized by precursor method. Dig J Nanomater Biostruct 6:1215–1226
37.
go back to reference Torrance JB, Bagus PS, Johhannsen I, Nazzal AI, Parkin SSP, Batail P (1998) Ferromagnetic interactions in organic-solids—an overview of theory and experiment. J Appl Phys 63:2962–2965 Torrance JB, Bagus PS, Johhannsen I, Nazzal AI, Parkin SSP, Batail P (1998) Ferromagnetic interactions in organic-solids—an overview of theory and experiment. J Appl Phys 63:2962–2965
38.
go back to reference Rajca A, Wongsriratanakul J, Rajca S (2001) Magnetic ordering in an organic polymer. Science 294:1503–1505 Rajca A, Wongsriratanakul J, Rajca S (2001) Magnetic ordering in an organic polymer. Science 294:1503–1505
39.
go back to reference Zaidi NA, Giblin SR, Terry I, Monkman AP (2004) Room temperature magnetic order in an organic magnet derived from polyaniline. Polymer 45:5683–5689 Zaidi NA, Giblin SR, Terry I, Monkman AP (2004) Room temperature magnetic order in an organic magnet derived from polyaniline. Polymer 45:5683–5689
40.
go back to reference Crayston JA, Devine JN, Walton JC (2000) Conceptual and synthetic strategies for the preparation of organic magnets. Tetrahedron 56:7829–7857 Crayston JA, Devine JN, Walton JC (2000) Conceptual and synthetic strategies for the preparation of organic magnets. Tetrahedron 56:7829–7857
41.
go back to reference Neveu S, Bee A, Robineau M, Talbot D (2002) Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid. J Colloid Interface Sci 255:293–298 Neveu S, Bee A, Robineau M, Talbot D (2002) Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid. J Colloid Interface Sci 255:293–298
42.
go back to reference Kumar R, Gautam S, Hwang I-C, Lee JR, Chae KH, Thakur N (2009) Preparation and characterization of α-Fe2O3 polyhedral nanocrystals via annealing technique. Mater Lett 63:1047–1050 Kumar R, Gautam S, Hwang I-C, Lee JR, Chae KH, Thakur N (2009) Preparation and characterization of α-Fe2O3 polyhedral nanocrystals via annealing technique. Mater Lett 63:1047–1050
43.
go back to reference Kumar P, Singh RK, Rawat N, Barman PR, Katyal SC, Jang H, Lee H-L, Kumar R (2013) A novel method for controlled synthesis of nanosize hematite (α-Fe2O3) thin film on liquid-vapor interface. J Nanoparticle Res 15:1532(1)–1532(13) Kumar P, Singh RK, Rawat N, Barman PR, Katyal SC, Jang H, Lee H-L, Kumar R (2013) A novel method for controlled synthesis of nanosize hematite (α-Fe2O3) thin film on liquid-vapor interface. J Nanoparticle Res 15:1532(1)–1532(13)
44.
go back to reference Park S-J, Kim S, Lee S, Khim Z, Char K, Hyeon T (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122:8581–8582 Park S-J, Kim S, Lee S, Khim Z, Char K, Hyeon T (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122:8581–8582
45.
go back to reference Puntes VF, Krishan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117 Puntes VF, Krishan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117
46.
go back to reference Chen Q, Rondinone AJ, Chakoumakos BC, Zhang ZJ (1999) Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J Magn Magn Mater 194:1–7 Chen Q, Rondinone AJ, Chakoumakos BC, Zhang ZJ (1999) Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J Magn Magn Mater 194:1–7
47.
go back to reference Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895 Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895
48.
go back to reference Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992 Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992
49.
go back to reference Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2002) Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J Am Chem Soc 124:11480–11485 Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2002) Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J Am Chem Soc 124:11480–11485
50.
go back to reference Sharma PK, Dutta RK, Pandey AC (2010) Alteration of magnetic and optical properties of ultrafine dilute magnetic semiconductor ZnO:Co2+ nanoparticles. J Colloid Interface Sci 345:149–153 Sharma PK, Dutta RK, Pandey AC (2010) Alteration of magnetic and optical properties of ultrafine dilute magnetic semiconductor ZnO:Co2+ nanoparticles. J Colloid Interface Sci 345:149–153
51.
go back to reference Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415 Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415
52.
go back to reference Jing ZH, Han DZ, Wu SH (2005) Morphological evolution of hematite nanoparticles with and without surfactant by hydrothermal method. Mater Lett 59:804–807 Jing ZH, Han DZ, Wu SH (2005) Morphological evolution of hematite nanoparticles with and without surfactant by hydrothermal method. Mater Lett 59:804–807
53.
go back to reference Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A (2005) Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater 285:296–302 Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A (2005) Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater 285:296–302
54.
go back to reference Jing Z, Wu S (2004) Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater Lett 58:3637–3640 Jing Z, Wu S (2004) Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater Lett 58:3637–3640
55.
go back to reference Liu X, Qiu G, Yan A, Wang Z, Li X (2007) Hydrothermal synthesis and characterization of α-FeOOH and α-Fe2O3 uniform nanocrystallines. J Alloys Compd 433:216–220 Liu X, Qiu G, Yan A, Wang Z, Li X (2007) Hydrothermal synthesis and characterization of α-FeOOH and α-Fe2O3 uniform nanocrystallines. J Alloys Compd 433:216–220
56.
go back to reference Wang J, Sun J, Sun Q, Chen Q (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38:1113–1118 Wang J, Sun J, Sun Q, Chen Q (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38:1113–1118
57.
go back to reference Togashi T, Naka T, Asahina S, Sato K, Takami S, Adschiri T (2011) Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. Dalton Trans 40:1073–1078 Togashi T, Naka T, Asahina S, Sato K, Takami S, Adschiri T (2011) Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. Dalton Trans 40:1073–1078
58.
go back to reference Phumying S, Labuayai S, Swatsitang E, Amornkitbamrung V, Maensiri S (2013) Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater Res Bull 48:2060–2065 Phumying S, Labuayai S, Swatsitang E, Amornkitbamrung V, Maensiri S (2013) Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater Res Bull 48:2060–2065
59.
go back to reference Viswanathiah MN, Tareen JAK, Krishnamurthy KV (1980) Low temperature hydrothermal synthesis of magnetite. J Cryst Growth 49:189–192 Viswanathiah MN, Tareen JAK, Krishnamurthy KV (1980) Low temperature hydrothermal synthesis of magnetite. J Cryst Growth 49:189–192
60.
go back to reference Ni S, Wang X, Zhou G, Yang F, Wang J, Wang Q, He D (2009) Hydrothermal synthesis of Fe3O4 nanoparticles and its application in lithium ion battery. Mater Lett 63:2701–2703 Ni S, Wang X, Zhou G, Yang F, Wang J, Wang Q, He D (2009) Hydrothermal synthesis of Fe3O4 nanoparticles and its application in lithium ion battery. Mater Lett 63:2701–2703
61.
go back to reference Ramesh R, Rajalakshmi M, Muthamizhchelvan C, Ponnusamy S (2012) Synthesis of Fe3O4 nanoflowers by one pot surfactant assisted hydrothermal method and its properties. Mater Lett 70:73–75 Ramesh R, Rajalakshmi M, Muthamizhchelvan C, Ponnusamy S (2012) Synthesis of Fe3O4 nanoflowers by one pot surfactant assisted hydrothermal method and its properties. Mater Lett 70:73–75
62.
go back to reference Fan R, Chen XH, Gui Z, Liu L, Chen ZY (2001) A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. Mater Res Bull 36:497–502 Fan R, Chen XH, Gui Z, Liu L, Chen ZY (2001) A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. Mater Res Bull 36:497–502
63.
go back to reference Hu M, Ji R-P, Jiang J-S (2010) Hydrothermal synthesis of magnetite crystals: from sheet to pseudo-octahedron. Mater Res Bull 45:1811–1815 Hu M, Ji R-P, Jiang J-S (2010) Hydrothermal synthesis of magnetite crystals: from sheet to pseudo-octahedron. Mater Res Bull 45:1811–1815
64.
go back to reference Sreeja V, Joy PA (2007) Microwave–hydrothermal synthesis of g-Fe2O3 nanoparticles and their magnetic properties. Mater Res Bull 42:1570–1576 Sreeja V, Joy PA (2007) Microwave–hydrothermal synthesis of g-Fe2O3 nanoparticles and their magnetic properties. Mater Res Bull 42:1570–1576
65.
go back to reference Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33:1015–1021 Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33:1015–1021
66.
go back to reference Hawa CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN (2010) Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram Int 36:1417–1422 Hawa CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN (2010) Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram Int 36:1417–1422
67.
go back to reference Islama MS, Kurawaki J, Kusumoto Y, Abdulla-Al-Mamun M, Mukhlish MZB (2012) Hydrothermal novel synthesis of neck-structured hyperthermia-suitable magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) nanoparticles. J Sci Res 4:99–107 Islama MS, Kurawaki J, Kusumoto Y, Abdulla-Al-Mamun M, Mukhlish MZB (2012) Hydrothermal novel synthesis of neck-structured hyperthermia-suitable magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) nanoparticles. J Sci Res 4:99–107
68.
go back to reference Daou TJ, Pourroy G, Bgin-Colin S, Grenche JM, Ulhaq-Bouillet C, Legare′ P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404 Daou TJ, Pourroy G, Bgin-Colin S, Grenche JM, Ulhaq-Bouillet C, Legare′ P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404
69.
go back to reference Baykal A, Kasapog˘lu N, Ko¨seog˘lu Y, Toprak MS, Bayrakdar H (2008) CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J Alloys Compd 464:514–518 Baykal A, Kasapog˘lu N, Ko¨seog˘lu Y, Toprak MS, Bayrakdar H (2008) CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J Alloys Compd 464:514–518
70.
go back to reference Yu SH, Fujino T, Yoshimura M (2003) Hydrothermal synthesis of ZnFe2O4 ultrafine particles with high magnetization. J Magn Magn Mater 256:420–424 Yu SH, Fujino T, Yoshimura M (2003) Hydrothermal synthesis of ZnFe2O4 ultrafine particles with high magnetization. J Magn Magn Mater 256:420–424
71.
go back to reference Liu Q, Sun J, Long H, Sun X, Zhong X, Xub Z (2008) Hydrothermal synthesis of CoFe2O4 nanoplatelets and nanoparticles. Mater Chem Phys 108:269–273 Liu Q, Sun J, Long H, Sun X, Zhong X, Xub Z (2008) Hydrothermal synthesis of CoFe2O4 nanoplatelets and nanoparticles. Mater Chem Phys 108:269–273
72.
go back to reference Pauline S, Amaliya AP (2011) Synthesis and characterization of highly monodispersive cofe2o4 magnetic nanoparticles by hydrothermal chemical route. Arch Appl Sci Res 3:213–223 Pauline S, Amaliya AP (2011) Synthesis and characterization of highly monodispersive cofe2o4 magnetic nanoparticles by hydrothermal chemical route. Arch Appl Sci Res 3:213–223
73.
go back to reference Nejati K, Zabihi R (2012) Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J 6:23(1)–23(6) Nejati K, Zabihi R (2012) Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J 6:23(1)–23(6)
74.
go back to reference Matijevic E (1986) Colloid science of composite system. In: Hench LL, Ulrich DR (eds) Science of ceramic chemical processing. Wiley, New York, p 463 Matijevic E (1986) Colloid science of composite system. In: Hench LL, Ulrich DR (eds) Science of ceramic chemical processing. Wiley, New York, p 463
75.
go back to reference Tamura H, Matijevic E (1982) Precipitation of cobalt ferrites. J Colloid Interface Sci 90:100–109 Tamura H, Matijevic E (1982) Precipitation of cobalt ferrites. J Colloid Interface Sci 90:100–109
76.
go back to reference Morgan PED (1974) Direct aqueous precipitation of lithium ferrite and titanate. J Am Ceram Soc 57:499–500 Morgan PED (1974) Direct aqueous precipitation of lithium ferrite and titanate. J Am Ceram Soc 57:499–500
77.
go back to reference Komarneni S, Fregeau E, Breval E, Roy R (1988) Hydrothermal preparation of ultrafine ferrites and their sintering. J Am Ceram Soc 71:26–28 Komarneni S, Fregeau E, Breval E, Roy R (1988) Hydrothermal preparation of ultrafine ferrites and their sintering. J Am Ceram Soc 71:26–28
78.
go back to reference Zhang XY, Dai JY, Ong HC (2011) Hydrothermal synthesis and properties of diluted magnetic semiconductor Zn1-xMnxO nanowires. Open J Phys Chem 1:6–10 Zhang XY, Dai JY, Ong HC (2011) Hydrothermal synthesis and properties of diluted magnetic semiconductor Zn1-xMnxO nanowires. Open J Phys Chem 1:6–10
79.
go back to reference Zhang K, Zhang X, Chen H, Chen X, Zheng L, Zhang J, Yang B (2004) Hollow titania spheres with movable silica spheres inside. Langmuir 20:11312–11314 Zhang K, Zhang X, Chen H, Chen X, Zheng L, Zhang J, Yang B (2004) Hollow titania spheres with movable silica spheres inside. Langmuir 20:11312–11314
80.
go back to reference Qin J (2007) Nanoparticles for multifunctional drug delivery systems—licentiate thesis. The Royal Institute of Technology, Stockholm Qin J (2007) Nanoparticles for multifunctional drug delivery systems—licentiate thesis. The Royal Institute of Technology, Stockholm
81.
go back to reference Shaker S, Zafarian S, Chakra CHS, Rao KV (2013) Preparation and characterization of magnetite nanoparticles by sol–gel method for water treatment. Int J Innov Res Sci Eng Technol 2:2969–2973 Shaker S, Zafarian S, Chakra CHS, Rao KV (2013) Preparation and characterization of magnetite nanoparticles by sol–gel method for water treatment. Int J Innov Res Sci Eng Technol 2:2969–2973
82.
go back to reference Khodabakhshi A, Amin MM, Mozaffari M (2011) Synthesis of magnetite nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater. Iran J Environ Health Sci Eng 8:189–200 Khodabakhshi A, Amin MM, Mozaffari M (2011) Synthesis of magnetite nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater. Iran J Environ Health Sci Eng 8:189–200
83.
go back to reference Tuutijärvi T, Vahalaa R, Sillanpitää M, Chen G (2012) Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery. Environ Technol 33:1927–1936 Tuutijärvi T, Vahalaa R, Sillanpitää M, Chen G (2012) Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery. Environ Technol 33:1927–1936
84.
go back to reference Hu J, Chen GH, Lo IMC (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132:709–715 Hu J, Chen GH, Lo IMC (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132:709–715
85.
go back to reference Qi H, Yan B, Li C (2010) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. IEEE 3rd International Nanoelectronics Conference, pp. 888–889 Qi H, Yan B, Li C (2010) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. IEEE 3rd International Nanoelectronics Conference, pp. 888–889
86.
go back to reference Yang L, Wang Z, Zhai B, Shao Y, Zhang Z, Sun Y, Yang J (2013) Magnetic properties of Eu3+ lightly doped ZnFe2O4 nanoparticles. Ceram Int 39:8261–8266 Yang L, Wang Z, Zhai B, Shao Y, Zhang Z, Sun Y, Yang J (2013) Magnetic properties of Eu3+ lightly doped ZnFe2O4 nanoparticles. Ceram Int 39:8261–8266
87.
go back to reference Khanna L, Verma NK (2013) Size-dependent magnetic properties of calcium ferrite nanoparticles. J Magn Magn Mater 336:1–7 Khanna L, Verma NK (2013) Size-dependent magnetic properties of calcium ferrite nanoparticles. J Magn Magn Mater 336:1–7
88.
go back to reference Khanna L, Verma NK (2013) Synthesis, characterization and in vitro cytotoxicity study of calcium ferrite nanoparticles. Mater Sci Semicond Process 16:1842–1848 Khanna L, Verma NK (2013) Synthesis, characterization and in vitro cytotoxicity study of calcium ferrite nanoparticles. Mater Sci Semicond Process 16:1842–1848
89.
go back to reference Nasir S, Saleemi AS, Fatima-tuz-Zahra, Anis-ur-Rehman M (2013) Enhancement in dielectric and magnetic properties of Ni–Zn ferrites prepared by sol–gel method. J Alloys Compd 572:170–174 Nasir S, Saleemi AS, Fatima-tuz-Zahra, Anis-ur-Rehman M (2013) Enhancement in dielectric and magnetic properties of Ni–Zn ferrites prepared by sol–gel method. J Alloys Compd 572:170–174
90.
go back to reference Van der Zaag PJ, Kolenbrander M, Rekveldt MT (1998) The effect of intragranular domain walls in MgMnZn-ferrite. J Appl Phys 83:6870–6872 Van der Zaag PJ, Kolenbrander M, Rekveldt MT (1998) The effect of intragranular domain walls in MgMnZn-ferrite. J Appl Phys 83:6870–6872
91.
go back to reference Sanpo N, Berndt CC, Wen C, Wang J (2013) Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 9:5830–5837 Sanpo N, Berndt CC, Wen C, Wang J (2013) Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 9:5830–5837
92.
go back to reference Zālīte I, Heidemane G, Kodols M, Grabis J, Maiorov M (2012) The synthesis, characterization and sintering of nickel and cobalt ferrite nanopowders. Mater Sci – Medžg 18:3–7. doi:10.5755/j01.ms.18.1.1332 Zālīte I, Heidemane G, Kodols M, Grabis J, Maiorov M (2012) The synthesis, characterization and sintering of nickel and cobalt ferrite nanopowders. Mater Sci – Medžg 18:3–7. doi:10.​5755/​j01.​ms.​18.​1.​1332
93.
go back to reference Chen D-H, He X-R (2001) Synthesis of nickel ferrite nanoparticles by sol–gel method. Mater Res Bull 36:1369–1377 Chen D-H, He X-R (2001) Synthesis of nickel ferrite nanoparticles by sol–gel method. Mater Res Bull 36:1369–1377
94.
go back to reference Sambasivam S, Joseph DP, Jeong JH, Choi BC, Lim KT, Kim SS, Song TK (2011) Antiferromagnetic interactions in Er-doped SnO2 DMS nanoparticles. J Nanopart Res 13:4623–4630 Sambasivam S, Joseph DP, Jeong JH, Choi BC, Lim KT, Kim SS, Song TK (2011) Antiferromagnetic interactions in Er-doped SnO2 DMS nanoparticles. J Nanopart Res 13:4623–4630
95.
go back to reference Mălăeru T, Neamţu J, Morari C, Sbarcea G (2012) Structural and magnetic properties of nanocrystalline powders of Ni-doped ZnO diluted magnetic semiconductors synthesized by sol–gel method. Rev Roum Chim 57:857–862 Mălăeru T, Neamţu J, Morari C, Sbarcea G (2012) Structural and magnetic properties of nanocrystalline powders of Ni-doped ZnO diluted magnetic semiconductors synthesized by sol–gel method. Rev Roum Chim 57:857–862
96.
go back to reference Deshpande K, Mukasyan A, Varma A (2004) Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem Mater 16:4896–4904 Deshpande K, Mukasyan A, Varma A (2004) Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem Mater 16:4896–4904
97.
go back to reference Suresh K, Patil K (1993) A combustion process for the instant synthesis of γ-iron oxide. J Mater Sci Lett 12:572–574 Suresh K, Patil K (1993) A combustion process for the instant synthesis of γ-iron oxide. J Mater Sci Lett 12:572–574
98.
go back to reference Erri P, Pranda P, Varma A (2004) Oxidizer–fuel interactions in aqueous combustion synthesis. 1. Iron(III) nitrate–model fuels. Ind Eng Chem Res 43:3092–3096 Erri P, Pranda P, Varma A (2004) Oxidizer–fuel interactions in aqueous combustion synthesis. 1. Iron(III) nitrate–model fuels. Ind Eng Chem Res 43:3092–3096
99.
go back to reference Toniolo J, Takimi AS, Andrade MJ, Bonadiman R, Bergmann CP (2007) Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and a-Fe2O3) particles. J Mater Sci 42:4785–4791 Toniolo J, Takimi AS, Andrade MJ, Bonadiman R, Bergmann CP (2007) Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and a-Fe2O3) particles. J Mater Sci 42:4785–4791
100.
go back to reference Venkaiah G, Rao KV, Kumar VSS, Chakra CHS (2013) Solution combustion synthesis and characterization of nano crystalline lanthanum ferrite using glycine as a fuel. Int J Mater Methods Technol 1:01–07 Venkaiah G, Rao KV, Kumar VSS, Chakra CHS (2013) Solution combustion synthesis and characterization of nano crystalline lanthanum ferrite using glycine as a fuel. Int J Mater Methods Technol 1:01–07
101.
go back to reference Bangale SV, Patil DR, Bamane SR (2011) Preparation and electrical properties of nanocrystalline MgFe2O4 oxide by combustion route. Arch Appl Sci Res 3:506–513 Bangale SV, Patil DR, Bamane SR (2011) Preparation and electrical properties of nanocrystalline MgFe2O4 oxide by combustion route. Arch Appl Sci Res 3:506–513
102.
go back to reference Ahmadipour M, Rao KV (2012) Preparation of nano particle Mg0.2Fe0.8O by Solution combustion method and their characterization. Int J Eng Adv Technol 1:135–137 Ahmadipour M, Rao KV (2012) Preparation of nano particle Mg0.2Fe0.8O by Solution combustion method and their characterization. Int J Eng Adv Technol 1:135–137
103.
go back to reference Yang J, Li X, Deng X, Huang Z, Zhang Y (2012) Salt-assisted solution combustion synthesis of ZnFe2O4 nanoparticles and photocatalytic activity with TiO2 (P25) as nanocomposite. J Ceram Soc Jpn 120:579–583 Yang J, Li X, Deng X, Huang Z, Zhang Y (2012) Salt-assisted solution combustion synthesis of ZnFe2O4 nanoparticles and photocatalytic activity with TiO2 (P25) as nanocomposite. J Ceram Soc Jpn 120:579–583
104.
go back to reference Choodamani C, Nagabhushana GP, Ashoka S, Prasad BD, Rudraswamy B, Chandrappa GT (2013) Structural and magnetic studies of Mg(1-x)ZnxFe2O4 nanoparticles prepared by a solution combustion method. J Alloys Compd 578:103–109 Choodamani C, Nagabhushana GP, Ashoka S, Prasad BD, Rudraswamy B, Chandrappa GT (2013) Structural and magnetic studies of Mg(1-x)ZnxFe2O4 nanoparticles prepared by a solution combustion method. J Alloys Compd 578:103–109
105.
go back to reference Reiss G, Huetten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4:725–726 Reiss G, Huetten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4:725–726
106.
go back to reference Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci 314:274–280 Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci 314:274–280
107.
go back to reference Derakhshi P, Khorrami SA, Lotfi R (2012) An investigation on synthesis and morphology of nickel doped cobalt ferrite in presence of surfactant at different calcinations temperature by co-precipitation route. World Appl Sci J 16:156–159 Derakhshi P, Khorrami SA, Lotfi R (2012) An investigation on synthesis and morphology of nickel doped cobalt ferrite in presence of surfactant at different calcinations temperature by co-precipitation route. World Appl Sci J 16:156–159
108.
go back to reference Shinde TJ, Gadkari AB, Vasambekar PN (2013) Magnetic properties and cation distribution study of nanocrystalline Ni–Zn ferrites. J Magn Magn Mater 333:152–155 Shinde TJ, Gadkari AB, Vasambekar PN (2013) Magnetic properties and cation distribution study of nanocrystalline Ni–Zn ferrites. J Magn Magn Mater 333:152–155
109.
go back to reference Iwasaki T, Kosaka K, Mizutani N, Watano S, Yanagida T, Tanaka H, Kawai T (2008) Mechanochemical preparation of magnetite nanoparticles by coprecipitation. Mater Lett 62:4155–4157 Iwasaki T, Kosaka K, Mizutani N, Watano S, Yanagida T, Tanaka H, Kawai T (2008) Mechanochemical preparation of magnetite nanoparticles by coprecipitation. Mater Lett 62:4155–4157
110.
go back to reference Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65:1882–1884 Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65:1882–1884
111.
go back to reference Perez JAL, Quintela MAL, Mira J, Rivas J, Charles SW (1997) Advances in the preparation of magnetic nanoparticles by the microemulsion method. J Phys Chem B 101:8045–8047 Perez JAL, Quintela MAL, Mira J, Rivas J, Charles SW (1997) Advances in the preparation of magnetic nanoparticles by the microemulsion method. J Phys Chem B 101:8045–8047
112.
go back to reference Perez JAL, Quintela MAL, Mira J, Rivas J (1997) Preparation of magnetic fluids with particles obtained in microemulsions. IEEE Trans Magn 33:4359–4362 Perez JAL, Quintela MAL, Mira J, Rivas J (1997) Preparation of magnetic fluids with particles obtained in microemulsions. IEEE Trans Magn 33:4359–4362
113.
go back to reference Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15:1945–1951 Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15:1945–1951
114.
go back to reference Lee KM, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1992) Synthesis and characterization of stable colloidal Fe3O4 particles in water-in-oil microemulsions. IEEE Trans Magn 28:3180–3182 Lee KM, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1992) Synthesis and characterization of stable colloidal Fe3O4 particles in water-in-oil microemulsions. IEEE Trans Magn 28:3180–3182
115.
go back to reference Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) Micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 104:1141–1145 Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) Micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 104:1141–1145
116.
go back to reference Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906 Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906
117.
go back to reference Langevin D (1992) Micelles and microemulsions. Annu Rev Phys Chem 43:341–369 Langevin D (1992) Micelles and microemulsions. Annu Rev Phys Chem 43:341–369
118.
go back to reference Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interf Sci 110:49–74 Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interf Sci 110:49–74
119.
go back to reference Lin X-M, Samia ACS (2006) Synthesis, assembly and physical properties of magnetic nanoparticles. J Magn Magn Mater 305:100–109 Lin X-M, Samia ACS (2006) Synthesis, assembly and physical properties of magnetic nanoparticles. J Magn Magn Mater 305:100–109
120.
go back to reference Lee BY, Lee J, Bae CJ, Park J-G, Noh H-J, Park J-H, Hyeon T (2005) Large scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509 Lee BY, Lee J, Bae CJ, Park J-G, Noh H-J, Park J-H, Hyeon T (2005) Large scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509
121.
go back to reference Pillai V, Kumar P, Multani MS, Shah DO (1993) Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing. Colloids Surf A Physicochem Eng Asp 80:69–75 Pillai V, Kumar P, Multani MS, Shah DO (1993) Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing. Colloids Surf A Physicochem Eng Asp 80:69–75
122.
go back to reference Morrison SA, Cahill CL, Carpenter EE, Calvin S, Swaminathan R, McHenry ME, Harris VG (2004) Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature. J Appl Phys 95:6392–6395 Morrison SA, Cahill CL, Carpenter EE, Calvin S, Swaminathan R, McHenry ME, Harris VG (2004) Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature. J Appl Phys 95:6392–6395
123.
go back to reference Liu C, Rondinone AJ, Zhang ZJ (2000) Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties. Pure Appl Chem 72:37–45 Liu C, Rondinone AJ, Zhang ZJ (2000) Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties. Pure Appl Chem 72:37–45
124.
go back to reference Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286:101–105 Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286:101–105
125.
go back to reference Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441 Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441
126.
go back to reference Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad BL, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24:5787–5794 Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad BL, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24:5787–5794
127.
go back to reference Roh Y, Vali H, Phelps TJ, Moon JW (2006) Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J Nanosci Nanotechnol 11:3517–3520 Roh Y, Vali H, Phelps TJ, Moon JW (2006) Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J Nanosci Nanotechnol 11:3517–3520
128.
go back to reference Chow GM, Kurihara LK, Kemner KM, Schoen PE, Elam WT, Ervin A, Keller S, Zhang YD, Budnick J, Ambrose T (1995) Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process. J Mater Res 10:1546–1554 Chow GM, Kurihara LK, Kemner KM, Schoen PE, Elam WT, Ervin A, Keller S, Zhang YD, Budnick J, Ambrose T (1995) Structural, morphological, and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process. J Mater Res 10:1546–1554
129.
go back to reference Beji Z, Ben CT, Smiri LS, Ammar S, Fiévet F, Jouini N, Grenèche JM (2006) Synthesis of nickel–zinc ferrite nanoparticles in polyol: morphological, structural and magnetic studies. Phys Status Solidi A 203:504–512 Beji Z, Ben CT, Smiri LS, Ammar S, Fiévet F, Jouini N, Grenèche JM (2006) Synthesis of nickel–zinc ferrite nanoparticles in polyol: morphological, structural and magnetic studies. Phys Status Solidi A 203:504–512
130.
go back to reference Zhao F, Zhang B, Feng L (2012) Preparation and magnetic properties of magnetite nanoparticles. Mater Lett 68:112–114 Zhao F, Zhang B, Feng L (2012) Preparation and magnetic properties of magnetite nanoparticles. Mater Lett 68:112–114
131.
go back to reference Mazar′ıo E, Herrasti P, Morales MP, Men′endez N (2012) Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23:355708 Mazar′ıo E, Herrasti P, Morales MP, Men′endez N (2012) Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23:355708
132.
go back to reference Rishikeshi SN, Joshi SS, Temgire MK, Bellare JR (2013) Chain length dependence of polyol synthesis of zinc ferrite nanoparticles: why is diethylene glycol so different. Dalton Trans 42:5430–5438 Rishikeshi SN, Joshi SS, Temgire MK, Bellare JR (2013) Chain length dependence of polyol synthesis of zinc ferrite nanoparticles: why is diethylene glycol so different. Dalton Trans 42:5430–5438
133.
go back to reference Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144(1)–144(13) Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144(1)–144(13)
134.
go back to reference Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265 Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265
135.
go back to reference Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131 Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131
136.
go back to reference Gu HW, Zheng RK, Zhang XX, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664–5665 Gu HW, Zheng RK, Zhang XX, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664–5665
137.
go back to reference Manikandan A, Vijaya JJ, Kennedy LJ, Bououdina M (2013) Microwave combustion synthesis, structural, optical and magnetic properties of Zn1-xSrxFe2O4 nanoparticles. Ceram Int 39:5909–5917 Manikandan A, Vijaya JJ, Kennedy LJ, Bououdina M (2013) Microwave combustion synthesis, structural, optical and magnetic properties of Zn1-xSrxFe2O4 nanoparticles. Ceram Int 39:5909–5917
138.
go back to reference Kulkarni SA, Sawadh PS, Paleia PK, Kokate KK (2014) Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram Int 40:1945–1949 Kulkarni SA, Sawadh PS, Paleia PK, Kokate KK (2014) Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram Int 40:1945–1949
139.
go back to reference Hashim M, Alimuddin, Kumar S, Koo BH, Shirsath SE, Mohammed EM, Shah J, Kotnala RK, Choi HK, Chung H, Kumar R (2012) Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J Alloys Compd 518:11–18 Hashim M, Alimuddin, Kumar S, Koo BH, Shirsath SE, Mohammed EM, Shah J, Kotnala RK, Choi HK, Chung H, Kumar R (2012) Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J Alloys Compd 518:11–18
140.
go back to reference Anand GT, Kennedy LJ, Vijaya JJ (2013) Microwave combustion synthesis, structural, optical and magnetic properties of Zn1-xCoxAl2O4 (0 ≤ x ≤ 0.5) spinel nanostructures. J Alloys Compd 581:558–566 Anand GT, Kennedy LJ, Vijaya JJ (2013) Microwave combustion synthesis, structural, optical and magnetic properties of Zn1-xCoxAl2O4 (0 ≤ x ≤ 0.5) spinel nanostructures. J Alloys Compd 581:558–566
141.
go back to reference Al-Ghamdi AA, Al-Hazmi F, Al-Tuwirqi RM, Alnowaiser F, Al-Hartomy OA, El-Tantawyd F, Yakuphanoglu F (2013) Synthesis, magnetic and ethanol gas sensing properties of semiconducting magnetite nanoparticles. Solid State Sci 19:111–116 Al-Ghamdi AA, Al-Hazmi F, Al-Tuwirqi RM, Alnowaiser F, Al-Hartomy OA, El-Tantawyd F, Yakuphanoglu F (2013) Synthesis, magnetic and ethanol gas sensing properties of semiconducting magnetite nanoparticles. Solid State Sci 19:111–116
142.
go back to reference Tai Y, Wang L, Yan G, Gao J-M, Yu H, Zhang L (2011) Recent research progress on the preparation and application of magnetic nanospheres. Polym Int 60:976–994 Tai Y, Wang L, Yan G, Gao J-M, Yu H, Zhang L (2011) Recent research progress on the preparation and application of magnetic nanospheres. Polym Int 60:976–994
143.
go back to reference Al-Saad KA, Amr MA, Hadi DT, Arar RS, AL-Sulaiti MM, Abdulmalik TA, Alsahamary NM, Kwak JC (2012) Iron oxide nanoparticles: applicability for heavy metal removal from contaminated water. Arab J Nucl Sci Appl 45:335–346 Al-Saad KA, Amr MA, Hadi DT, Arar RS, AL-Sulaiti MM, Abdulmalik TA, Alsahamary NM, Kwak JC (2012) Iron oxide nanoparticles: applicability for heavy metal removal from contaminated water. Arab J Nucl Sci Appl 45:335–346
144.
go back to reference Chowdhury SR, Yanful EK (2011) Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ J 25:429–437 Chowdhury SR, Yanful EK (2011) Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ J 25:429–437
145.
go back to reference Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manag 91:2238–2247 Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manag 91:2238–2247
146.
go back to reference Salmani MH, Ehrampoush MH, Aboueian–Jahromi M, Askarishah M (2013) Comparison between Ag (I) and Ni (II) removal from synthetic nuclear power plant coolant water by iron oxide nanoparticles. J Environ Health Sci Eng 11:21(1)–21(7) Salmani MH, Ehrampoush MH, Aboueian–Jahromi M, Askarishah M (2013) Comparison between Ag (I) and Ni (II) removal from synthetic nuclear power plant coolant water by iron oxide nanoparticles. J Environ Health Sci Eng 11:21(1)–21(7)
147.
go back to reference Afkhami A, Saber-Tehrani M, Bagheri H (2010) Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination 263:240–248 Afkhami A, Saber-Tehrani M, Bagheri H (2010) Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination 263:240–248
148.
go back to reference Wu J, Wang J, Li H, Du Y, Huang K, Liu B (2013) Designed synthesis of hematite-based nanosorbents for dye removal. J Mater Chem A 1:9837–9847 Wu J, Wang J, Li H, Du Y, Huang K, Liu B (2013) Designed synthesis of hematite-based nanosorbents for dye removal. J Mater Chem A 1:9837–9847
149.
go back to reference Madrakian T, Afkhami A, Ahmadi M (2012) Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim Acta A Mol Biomol Spectrosc 99:102–109 Madrakian T, Afkhami A, Ahmadi M (2012) Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim Acta A Mol Biomol Spectrosc 99:102–109
150.
go back to reference Hafeli U, Pauer G, Failing S, Tapolsky G (2001) Radiolabeling of magnetic particles with rhenium −188 for cancer therapy. J Magn Magn Mater 225:73–78 Hafeli U, Pauer G, Failing S, Tapolsky G (2001) Radiolabeling of magnetic particles with rhenium −188 for cancer therapy. J Magn Magn Mater 225:73–78
151.
go back to reference Chemla YR, Grossman HL, Poon Y, McDermott R, Stevens R, Alper MD, Clarke J (2000) Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci U S A 97:14268–14272 Chemla YR, Grossman HL, Poon Y, McDermott R, Stevens R, Alper MD, Clarke J (2000) Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci U S A 97:14268–14272
152.
go back to reference Hogemann D, Josephson L, Weissleder R, Basilion JP (2000) Improvement of MRI probes to allow efficient detection of gene expression. Bioconjug Chem 11:941–946 Hogemann D, Josephson L, Weissleder R, Basilion JP (2000) Improvement of MRI probes to allow efficient detection of gene expression. Bioconjug Chem 11:941–946
153.
go back to reference Oswald P, Clement O, Chambon C, Schouman-Claeys E, Frija G (1997) Liver positive enhancement after injection of superparamagnetic nanoparticles: respective role of circulating and uptaken particles. Magn Reson Imaging 15:1025–1031 Oswald P, Clement O, Chambon C, Schouman-Claeys E, Frija G (1997) Liver positive enhancement after injection of superparamagnetic nanoparticles: respective role of circulating and uptaken particles. Magn Reson Imaging 15:1025–1031
154.
go back to reference Murbe J, Rechtenbach A, Topfer J (2008) Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Mater Chem Phys 110:426–433 Murbe J, Rechtenbach A, Topfer J (2008) Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Mater Chem Phys 110:426–433
155.
go back to reference Koseoglu Y, Kavas H, Aktas B (2006) Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys Stat Sol A 203:1595–1601 Koseoglu Y, Kavas H, Aktas B (2006) Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys Stat Sol A 203:1595–1601
156.
go back to reference Duan XF, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69 Duan XF, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69
157.
go back to reference Dumestre F, Chaudret B, Amiens C, Fromen MC, Casanove MJ, Renaud P, Zurcher P (2002) Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. Angew Chem Int Ed 41:4286–4289 Dumestre F, Chaudret B, Amiens C, Fromen MC, Casanove MJ, Renaud P, Zurcher P (2002) Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. Angew Chem Int Ed 41:4286–4289
158.
go back to reference Dumestre F, Chaudret B, Amiens C, Renaud P, Fejes P (2004) Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)(2)](2). Science 303:821–823 Dumestre F, Chaudret B, Amiens C, Renaud P, Fejes P (2004) Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)(2)](2). Science 303:821–823
159.
go back to reference Tourinho FA, Franck R, Massart R (1990) Aqueous ferrofluids based on manganese and cobalt ferrites. J Mater Sci 25:3249–3254 Tourinho FA, Franck R, Massart R (1990) Aqueous ferrofluids based on manganese and cobalt ferrites. J Mater Sci 25:3249–3254
160.
go back to reference Che RC, Peng L-M, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405 Che RC, Peng L-M, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405
161.
go back to reference Brazel CS (2009) Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res 26:644–656 Brazel CS (2009) Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res 26:644–656
162.
go back to reference Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148 Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148
163.
go back to reference Muthurani S, Balaji M, Gautam S, Chae KH, Song JH, Padiyan DP, Asokan K (2011) Magnetic and humidity sensing properties of nanostructured Cu[X]Co[1-X]Fe2O4 synthesized by auto combustion technique. J Nanosci Nanotechnol 11:5850–5855 Muthurani S, Balaji M, Gautam S, Chae KH, Song JH, Padiyan DP, Asokan K (2011) Magnetic and humidity sensing properties of nanostructured Cu[X]Co[1-X]Fe2O4 synthesized by auto combustion technique. J Nanosci Nanotechnol 11:5850–5855
164.
go back to reference Rashad MM, Fouad OA (2005) Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO. Mater Chem Phys 94:365–370 Rashad MM, Fouad OA (2005) Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO. Mater Chem Phys 94:365–370
165.
go back to reference Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic. Science 281:951–956 Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic. Science 281:951–956
166.
go back to reference Ohno H (1999) Properties of ferromagnetic III-V semiconductors. J Magn Magn Mater 200:110–129 Ohno H (1999) Properties of ferromagnetic III-V semiconductors. J Magn Magn Mater 200:110–129
167.
go back to reference Fukumura T, Yamada Y, Toyosaki H, Hasegawa T, Koinuma H, Kawasaki M (2004) Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl Surf Sci 223:62–67 Fukumura T, Yamada Y, Toyosaki H, Hasegawa T, Koinuma H, Kawasaki M (2004) Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl Surf Sci 223:62–67
168.
go back to reference Wang C, Xu C, Zeng H, Sun S (2009) Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv Mater 21:3045–3052 Wang C, Xu C, Zeng H, Sun S (2009) Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv Mater 21:3045–3052
169.
go back to reference Behrens S (2011) Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions. Nanoscale 3:877–892 Behrens S (2011) Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions. Nanoscale 3:877–892
170.
go back to reference Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458 Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458
171.
go back to reference Mezger TR (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network, Hannover Mezger TR (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network, Hannover
172.
go back to reference Dobson J (2006) Magnetic micro- and nanoparticle-based targeting for drug and gene delivery. Nanomedicine 2006(1):31–37 Dobson J (2006) Magnetic micro- and nanoparticle-based targeting for drug and gene delivery. Nanomedicine 2006(1):31–37
173.
go back to reference Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110 Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110
174.
go back to reference Wilson JL, Poddar P, Frey NA, Srikanth H, Mohomed K, Harmon JP, Kotha S, Wachsmuth J (2004) Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 95:1439–1443 Wilson JL, Poddar P, Frey NA, Srikanth H, Mohomed K, Harmon JP, Kotha S, Wachsmuth J (2004) Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 95:1439–1443
175.
go back to reference Srikanth H, Poddar P, Gass J (2005) Materials processing and tunable magnetism in polymer nanocomposites. In: Processing and fabrication of advanced materials XIII, vol 1. Stallion Press, Singapore, pp 367–375 Srikanth H, Poddar P, Gass J (2005) Materials processing and tunable magnetism in polymer nanocomposites. In: Processing and fabrication of advanced materials XIII, vol 1. Stallion Press, Singapore, pp 367–375
176.
go back to reference Kong I, Ahmad SH, Abdullah MH, Yusoff AN (2009) The effect of temperature on magnetic behavior of magnetite nanoparticles and its nanocomposites. AIP Conf Proc 1136:830–834 Kong I, Ahmad SH, Abdullah MH, Yusoff AN (2009) The effect of temperature on magnetic behavior of magnetite nanoparticles and its nanocomposites. AIP Conf Proc 1136:830–834
177.
go back to reference Shannigrahi SR, Pramoda KP, Nugroho FAA (2012) Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications. J Magn Magn Mater 324:140–145 Shannigrahi SR, Pramoda KP, Nugroho FAA (2012) Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications. J Magn Magn Mater 324:140–145
178.
go back to reference Rajput AB, Rahaman SJ, Sarkhel G, Patra MK, Vadera SR, Singru PM, Yagci Y, Ghosh NN (2013) Synthesis, characterization, and properties of flexible magnetic nanocomposites of cobalt ferrite–polybenzoxazine–linear low-density polyethylene. J Appl Polym Sci. doi:10.1002/APP.38426 Rajput AB, Rahaman SJ, Sarkhel G, Patra MK, Vadera SR, Singru PM, Yagci Y, Ghosh NN (2013) Synthesis, characterization, and properties of flexible magnetic nanocomposites of cobalt ferrite–polybenzoxazine–linear low-density polyethylene. J Appl Polym Sci. doi:10.​1002/​APP.​38426
179.
go back to reference Chung Y-C, Choi JW, Choi MW, Chun BC (2012) Characterization of flexibly linked shape memory polyurethane composite with magnetic property. J Thermoplast Compos Mater 25:283–303 Chung Y-C, Choi JW, Choi MW, Chun BC (2012) Characterization of flexibly linked shape memory polyurethane composite with magnetic property. J Thermoplast Compos Mater 25:283–303
180.
go back to reference Vunain E, Mishra AK, Krause RW (2013) Fabrication, characterization and application of polymer nanocomposites for arsenic(III) removal from water. J Inorg Organomet Polym 23:293–305 Vunain E, Mishra AK, Krause RW (2013) Fabrication, characterization and application of polymer nanocomposites for arsenic(III) removal from water. J Inorg Organomet Polym 23:293–305
181.
go back to reference Baker C, Ismat Shah S, Hasanain SK (2004) Magnetic behavior of iron and iron-oxide nanoparticle/polymer composites. J Magn Magn Mater 280:412–418 Baker C, Ismat Shah S, Hasanain SK (2004) Magnetic behavior of iron and iron-oxide nanoparticle/polymer composites. J Magn Magn Mater 280:412–418
182.
go back to reference Yang TI, Brown RNC, Kempel LC, Kofinas P (2008) Magneto-dielectric properties of polymer-Fe3O4 nanocomposites. J Magn Magn Mater 320:2714–2720 Yang TI, Brown RNC, Kempel LC, Kofinas P (2008) Magneto-dielectric properties of polymer-Fe3O4 nanocomposites. J Magn Magn Mater 320:2714–2720
183.
go back to reference Fragouli D, Buonsanti R, Bertoni G, Sangregorio C, Innocenti C, Falqui A, Gatteschi D, Cozzoli PD, Athanassiou A, Cingolani R (2010) Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy. ACS Nano 4:1873–1878 Fragouli D, Buonsanti R, Bertoni G, Sangregorio C, Innocenti C, Falqui A, Gatteschi D, Cozzoli PD, Athanassiou A, Cingolani R (2010) Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy. ACS Nano 4:1873–1878
184.
go back to reference Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens Bioelectron 24:676–683 Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens Bioelectron 24:676–683
185.
go back to reference Escudero C, Fiol N, Villaescusa I, Bollinger JC (2009) Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. J Hazard Mater 164:533–541 Escudero C, Fiol N, Villaescusa I, Bollinger JC (2009) Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. J Hazard Mater 164:533–541
186.
go back to reference Pisanello F, Paolis RD, Lorenzo D, Nitti S, Monti G, Fragouli D, Athanassiou A, Manna L, Tarricone L, Vittorio MD, Martiradonna L (2013) Radiofrequency characterization of polydimethylsiloxane–iron oxide based nanocomposites. Microelectron Eng 111:46–51 Pisanello F, Paolis RD, Lorenzo D, Nitti S, Monti G, Fragouli D, Athanassiou A, Manna L, Tarricone L, Vittorio MD, Martiradonna L (2013) Radiofrequency characterization of polydimethylsiloxane–iron oxide based nanocomposites. Microelectron Eng 111:46–51
187.
go back to reference Ziolo RF, Giannelis EP, Weinstein BA, Ohoro MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3—a new optically transparent magnetic material. Science 257:219–223 Ziolo RF, Giannelis EP, Weinstein BA, Ohoro MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3—a new optically transparent magnetic material. Science 257:219–223
188.
go back to reference Cao Z, Jiang WQ, Ye XZ, Gong XL (2008) Preparation of superparamagnetic Fe3O4/PMMA nanocomposites and their magnetorheological characteristics. J Magn Magn Mater 320:1499–1502 Cao Z, Jiang WQ, Ye XZ, Gong XL (2008) Preparation of superparamagnetic Fe3O4/PMMA nanocomposites and their magnetorheological characteristics. J Magn Magn Mater 320:1499–1502
189.
go back to reference Burke NAD, Stover HDH, Dawson FP (2002) Magnetic nanocomposites: preparation and characterization of polymer-coated iron nanoparticles. Chem Mater 14:4752–4761 Burke NAD, Stover HDH, Dawson FP (2002) Magnetic nanocomposites: preparation and characterization of polymer-coated iron nanoparticles. Chem Mater 14:4752–4761
190.
go back to reference Keng PY, Shim I, Korth BD, Douglas JF, Pyun J (2007) Synthesis and self-assembly of polymer coated ferromagnetic nanoparticles. ACS Nano 1:279–292 Keng PY, Shim I, Korth BD, Douglas JF, Pyun J (2007) Synthesis and self-assembly of polymer coated ferromagnetic nanoparticles. ACS Nano 1:279–292
191.
go back to reference Korth BD, Keng P, Shim I, Bowles SE, Tang C, Kowalewski T, Nebesny KW, Pyun J (2006) Polymer coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J Am Chem Soc 128:6562–6563 Korth BD, Keng P, Shim I, Bowles SE, Tang C, Kowalewski T, Nebesny KW, Pyun J (2006) Polymer coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J Am Chem Soc 128:6562–6563
192.
go back to reference Zhang XH, Ho KM, Wu AH, Wong KH, Li P (2010) Hydrothermal microemulsion synthesis of oxidatively stable cobalt nanocrystals encapsulated with surfactant/polymer complex shells. Langmuir 26:6009–6014 Zhang XH, Ho KM, Wu AH, Wong KH, Li P (2010) Hydrothermal microemulsion synthesis of oxidatively stable cobalt nanocrystals encapsulated with surfactant/polymer complex shells. Langmuir 26:6009–6014
193.
go back to reference Ugelstad J, Senstad P, Kilaas L, Presvik WS, Herje R, Bererge A, Hornes E (1993) Monodisperse magnetic polymer particles: new biochemical and biomedical applications. Blood Purif 11:349–369 Ugelstad J, Senstad P, Kilaas L, Presvik WS, Herje R, Bererge A, Hornes E (1993) Monodisperse magnetic polymer particles: new biochemical and biomedical applications. Blood Purif 11:349–369
194.
go back to reference Denkbas EB, Kilicay E, Birlikseven C, Ozturk E (2002) Magnetic chitosan microspheres: preparation and characterization. React Funct Polym 50:225–232 Denkbas EB, Kilicay E, Birlikseven C, Ozturk E (2002) Magnetic chitosan microspheres: preparation and characterization. React Funct Polym 50:225–232
195.
go back to reference Hassan EE, Parish RC, Gallo JM (1992) Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole. Pharm Res 9:390–397 Hassan EE, Parish RC, Gallo JM (1992) Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole. Pharm Res 9:390–397
196.
go back to reference Rorrer GL, Hsien TY, Way JD (1993) Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from waste water. Ind Eng Chem Res 32:2170–2178 Rorrer GL, Hsien TY, Way JD (1993) Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from waste water. Ind Eng Chem Res 32:2170–2178
197.
go back to reference Gupta PK, Hung CT, Lam FC, Perrier DG (1988) Albumin microspheres. III. Synthesis and characterization of microspheres containing adriamycin and magnetite. Int J Pharm 43:167–177 Gupta PK, Hung CT, Lam FC, Perrier DG (1988) Albumin microspheres. III. Synthesis and characterization of microspheres containing adriamycin and magnetite. Int J Pharm 43:167–177
198.
go back to reference Müller-Schulte D, Brunner H (1995) Novel magnetic microspheres on the basis of poly(vinyl alcohol) as affinity medium for quantitative detection of glycated hemoglobin. J Chromatogr A 711:53–60 Müller-Schulte D, Brunner H (1995) Novel magnetic microspheres on the basis of poly(vinyl alcohol) as affinity medium for quantitative detection of glycated hemoglobin. J Chromatogr A 711:53–60
199.
go back to reference Barrett KEJ (1975) Dispersion polymerization in organic media. John Wiley and Sons, New York Barrett KEJ (1975) Dispersion polymerization in organic media. John Wiley and Sons, New York
200.
go back to reference Horak D, Benedyk N (2001) Magnetic poly(glycidylmethacrylate) microspheres by dispersion polymerization in the presence of electrostatically stabilized ferrofluids. J Polym Sci Part A Polym Chem 39:3707–3715 Horak D, Benedyk N (2001) Magnetic poly(glycidylmethacrylate) microspheres by dispersion polymerization in the presence of electrostatically stabilized ferrofluids. J Polym Sci Part A Polym Chem 39:3707–3715
201.
go back to reference Fan LH, Luo YL, Chen YS, Zhang CH, Wein QB (2009) Preparation and characterization of Fe3O4 magnetic composite microspheres covered by a P(MAH-co-MAA) copolymer. J Nanoparticle Res 11:449–458 Fan LH, Luo YL, Chen YS, Zhang CH, Wein QB (2009) Preparation and characterization of Fe3O4 magnetic composite microspheres covered by a P(MAH-co-MAA) copolymer. J Nanoparticle Res 11:449–458
202.
go back to reference Daniel JC, Schuppiser JL, Tricot M (1982) Magnetic polymer latex and preparation process. U.S. Patent no. 4358388 Daniel JC, Schuppiser JL, Tricot M (1982) Magnetic polymer latex and preparation process. U.S. Patent no. 4358388
203.
go back to reference Charmot D, Vidil C (1994) Magnetizable composite microspheres of hydrophobic crosslinked polymer, process for preparing them and their application in biology. U.S. patent no. 5356713 Charmot D, Vidil C (1994) Magnetizable composite microspheres of hydrophobic crosslinked polymer, process for preparing them and their application in biology. U.S. patent no. 5356713
204.
go back to reference Wormuth K (2001) Superparamagnetic latex via inverse emulsion polymerization. J Colloid Interface Sci 241:366–377 Wormuth K (2001) Superparamagnetic latex via inverse emulsion polymerization. J Colloid Interface Sci 241:366–377
205.
go back to reference Ramírez LP, Landfester K (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol Chem Phys 204:22–31 Ramírez LP, Landfester K (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol Chem Phys 204:22–31
206.
go back to reference Luo Y-D, Dai C-A, Chiu W-Y (2008) Polystyrene/Fe3O4 composite latex via miniemulsion polymerization-nucleation mechanism and morphology. J Polym Sci A Polym Chem 46:1014–1024 Luo Y-D, Dai C-A, Chiu W-Y (2008) Polystyrene/Fe3O4 composite latex via miniemulsion polymerization-nucleation mechanism and morphology. J Polym Sci A Polym Chem 46:1014–1024
207.
go back to reference Xu ZZ, Wang CC, Yang WL, Deng YH, Fu SK (2004) Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization. J Magn Magn Mater 277:136–143 Xu ZZ, Wang CC, Yang WL, Deng YH, Fu SK (2004) Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization. J Magn Magn Mater 277:136–143
208.
go back to reference Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28:83–114 Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28:83–114
209.
go back to reference Zhang Y, Kohler N, Zhang MQ (2002) Surface modification of superparamagnetic magnetite nanoparticles and their uptake. Biomaterials 23:1553–1561 Zhang Y, Kohler N, Zhang MQ (2002) Surface modification of superparamagnetic magnetite nanoparticles and their uptake. Biomaterials 23:1553–1561
210.
go back to reference Flesch C, Delaite C, Dumas P, Bourgeat-Lami E, Duguet E (2004) Grafting of poly(ε-caprolactone) onto maghemite nanoparticles. J Polym Sci A Polym Chem 42:6011–6020 Flesch C, Delaite C, Dumas P, Bourgeat-Lami E, Duguet E (2004) Grafting of poly(ε-caprolactone) onto maghemite nanoparticles. J Polym Sci A Polym Chem 42:6011–6020
211.
go back to reference Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16:1977–1983 Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16:1977–1983
212.
go back to reference Sindhu S, Jegadesan S, Parthiban A, Valiyaveettil S (2006) Synthesis and characterization of ferrite nanocomposite spheres from hydroxylated polymers. J Magn Magn Mater 296:104–113 Sindhu S, Jegadesan S, Parthiban A, Valiyaveettil S (2006) Synthesis and characterization of ferrite nanocomposite spheres from hydroxylated polymers. J Magn Magn Mater 296:104–113
213.
go back to reference Ninjbadgar T, Yamamoto S, Fukuda T (2004) Synthesis and magnetic properties of the γ-Fe2O3/poly-(methyl methacrylate)-core/shell nanoparticles. Solid State Sci 6:879–885 Ninjbadgar T, Yamamoto S, Fukuda T (2004) Synthesis and magnetic properties of the γ-Fe2O3/poly-(methyl methacrylate)-core/shell nanoparticles. Solid State Sci 6:879–885
214.
go back to reference Flesch C, Bourgeat-Lami E, Mornet S, Duguet E, Delaite C, Dumas P (2005) Synthesis of colloidal superparamagnetic nanocomposites by grafting poly(ε-caprolactone) from the surface of organosilane-modified maghemite nanoparticles. J Polym Sci A Polym Chem 43:3221–3231 Flesch C, Bourgeat-Lami E, Mornet S, Duguet E, Delaite C, Dumas P (2005) Synthesis of colloidal superparamagnetic nanocomposites by grafting poly(ε-caprolactone) from the surface of organosilane-modified maghemite nanoparticles. J Polym Sci A Polym Chem 43:3221–3231
215.
go back to reference Flesch C, Unterfinger Y, Bourgeat-Lami E, Duguet E, Delaite C, Dumas P (2005) Poly(ethylene glycol) surface coated magnetic particles. Macromol Rapid Commun 26:1494–1498 Flesch C, Unterfinger Y, Bourgeat-Lami E, Duguet E, Delaite C, Dumas P (2005) Poly(ethylene glycol) surface coated magnetic particles. Macromol Rapid Commun 26:1494–1498
216.
go back to reference Zhou LL, Yuan JY, Yuan WZ, Sui XF, Wu SZ, Li ZL, Shen DZ (2009) Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J Magn Magn Mater 321:2799–2804 Zhou LL, Yuan JY, Yuan WZ, Sui XF, Wu SZ, Li ZL, Shen DZ (2009) Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. J Magn Magn Mater 321:2799–2804
217.
go back to reference Vestal CR, Zhang ZJ (2002) Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J Am Chem Soc 124:14312–14313 Vestal CR, Zhang ZJ (2002) Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J Am Chem Soc 124:14312–14313
218.
go back to reference Wang Y, Teng X, Wang J-S, Yang H (2003) Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core-shell nanoparticles. Nano Lett 3:789–793 Wang Y, Teng X, Wang J-S, Yang H (2003) Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core-shell nanoparticles. Nano Lett 3:789–793
219.
go back to reference Duan H, Kuang M, Wang D, Kurth DG, Moehwald H (2005) Colloidally stable amphibious nanocrystals derived from poly(2-(dimethylamino)ethyl methacryate) capping. Angew Chem Int Ed 44:1717–1720 Duan H, Kuang M, Wang D, Kurth DG, Moehwald H (2005) Colloidally stable amphibious nanocrystals derived from poly(2-(dimethylamino)ethyl methacryate) capping. Angew Chem Int Ed 44:1717–1720
220.
go back to reference Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Surface initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 45:2231–2235 Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Surface initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 45:2231–2235
221.
go back to reference Gelbrich T, Feyen M, Schmidt A (2006) Magnetic thermoresponsive core-shell nanoparticles. Macromolecules 39:3469–3472 Gelbrich T, Feyen M, Schmidt A (2006) Magnetic thermoresponsive core-shell nanoparticles. Macromolecules 39:3469–3472
222.
go back to reference Gelbrich T, Marten G, Schmidt A (2010) Reversible thermoflocculation of magnetic core–shell particles induced by remote magnetic heating. Polymer 51:2818–2824 Gelbrich T, Marten G, Schmidt A (2010) Reversible thermoflocculation of magnetic core–shell particles induced by remote magnetic heating. Polymer 51:2818–2824
223.
go back to reference Matsuno R, Yamamoto K, Otsuka H, Takahara A (2004) Polystyrene- and poly(3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization. Macromolecules 37:2203–2209 Matsuno R, Yamamoto K, Otsuka H, Takahara A (2004) Polystyrene- and poly(3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization. Macromolecules 37:2203–2209
224.
go back to reference Wang W-C, Neoh K-G, Kang E-T (2006) Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization. Macromol Rapid Commun 27:1665–1669 Wang W-C, Neoh K-G, Kang E-T (2006) Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization. Macromol Rapid Commun 27:1665–1669
225.
go back to reference Vollath D, Szabó DV, Fuchs J (1999) Synthesis and properties of ceramic-polymer composites. Nanostruct Mater 12:433–438 Vollath D, Szabó DV, Fuchs J (1999) Synthesis and properties of ceramic-polymer composites. Nanostruct Mater 12:433–438
226.
go back to reference Vollath D, Szabó DV (1999) Coated nanoparticles: a new way to improved nanocomposites. J Nanoparticle Res 1:235–242 Vollath D, Szabó DV (1999) Coated nanoparticles: a new way to improved nanocomposites. J Nanoparticle Res 1:235–242
227.
go back to reference Lamparth I, Szabó DV, Vollath D (2002) Ceramic nanoparticles coated with oligomers based on acrylic derivatives. Macromol Symp 181:107–112 Lamparth I, Szabó DV, Vollath D (2002) Ceramic nanoparticles coated with oligomers based on acrylic derivatives. Macromol Symp 181:107–112
228.
go back to reference Srikanth H, Hajndl R, Chirinos C, Sanders J, Sampath A, Sudarshan TS (2001) Magnetic studies of polymer-coated Fe nanoparticles synthesized by microwave plasma polymerization. Appl Phys Lett 79:3503–3505 Srikanth H, Hajndl R, Chirinos C, Sanders J, Sampath A, Sudarshan TS (2001) Magnetic studies of polymer-coated Fe nanoparticles synthesized by microwave plasma polymerization. Appl Phys Lett 79:3503–3505
229.
go back to reference Caruso F, Susha AS, Giersig M, Möhwald H (1999) Magnetic core–shell particles: preparation of magnetite multilayers on polymer latex microspheres. Adv Mater 11:950–953 Caruso F, Susha AS, Giersig M, Möhwald H (1999) Magnetic core–shell particles: preparation of magnetite multilayers on polymer latex microspheres. Adv Mater 11:950–953
230.
go back to reference Sauzedde F, Elaissari A, Pichot C (1999) Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid Polym Sci 277:846–855 Sauzedde F, Elaissari A, Pichot C (1999) Hydrophilic magnetic polymer latexes. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid Polym Sci 277:846–855
231.
go back to reference Sauzedde F, Elaissari A, Pichot C (1999) Hydrophilic magnetic polymer latexes. 2. Encapsulation of adsorbed iron oxide nanoparticles. Colloid Polym Sci 277:1041–1050 Sauzedde F, Elaissari A, Pichot C (1999) Hydrophilic magnetic polymer latexes. 2. Encapsulation of adsorbed iron oxide nanoparticles. Colloid Polym Sci 277:1041–1050
232.
go back to reference Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci 212:49–57 Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci 212:49–57
233.
go back to reference Gu S, Shiratori T, Konno M (2003) Synthesis of monodisperse, magnetic latex particles with polystyrene core. Colloid Polym Sci 281:1076–1081 Gu S, Shiratori T, Konno M (2003) Synthesis of monodisperse, magnetic latex particles with polystyrene core. Colloid Polym Sci 281:1076–1081
234.
go back to reference Deng YH, Yang WL, Wang CC, Fu SK (2003) A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core–shell structure. Adv Mater 15:1729–1732 Deng YH, Yang WL, Wang CC, Fu SK (2003) A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core–shell structure. Adv Mater 15:1729–1732
235.
go back to reference Dean JG, Bosqui FL, Lanouette KH (1972) Removing heavy metals from waste water. Environ Sci Technol 6:518–522 Dean JG, Bosqui FL, Lanouette KH (1972) Removing heavy metals from waste water. Environ Sci Technol 6:518–522
236.
go back to reference Wang LK, Vaccari DA, Li Y, Shammas NK (2005) In: Wang LK, Hung YT, Shammas NK (eds) Chemical precipitation physicochemical treatment processes. Humana Press, New Jersey, pp 3141–3197 Wang LK, Vaccari DA, Li Y, Shammas NK (2005) In: Wang LK, Hung YT, Shammas NK (eds) Chemical precipitation physicochemical treatment processes. Humana Press, New Jersey, pp 3141–3197
237.
go back to reference Xing Y, Chen X, Wang D (2007) Electrically regenerated ion exchange for removal and recovery of Cr (VI) from wastewater. Environ Sci Technol 41:1439–1443 Xing Y, Chen X, Wang D (2007) Electrically regenerated ion exchange for removal and recovery of Cr (VI) from wastewater. Environ Sci Technol 41:1439–1443
238.
go back to reference Walsh FC, Reade GW (1994) Electrochemical techniques for the treatment of dilute metal-ion solutions. Stud Environ Sci 59:3–44 Walsh FC, Reade GW (1994) Electrochemical techniques for the treatment of dilute metal-ion solutions. Stud Environ Sci 59:3–44
239.
go back to reference Bódalo-Santoyo A, Gómez-Carrasco JL, Gómez-Gómez E, Máximo-Martín F, Hidalgo-Montesinos AM (2003) Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155:101–108 Bódalo-Santoyo A, Gómez-Carrasco JL, Gómez-Gómez E, Máximo-Martín F, Hidalgo-Montesinos AM (2003) Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155:101–108
240.
go back to reference Ersahin ME, Ozgun H, Dereli RK, Ozturk I, Roest K et al (2012) A review on dynamic membrane filtration: materials, applications and future perspectives. Bioresour Technol 122:196–206 Ersahin ME, Ozgun H, Dereli RK, Ozturk I, Roest K et al (2012) A review on dynamic membrane filtration: materials, applications and future perspectives. Bioresour Technol 122:196–206
241.
go back to reference Zhang P, Hahn HH, Hoffmann E (2003) Different behavior of iron (III) and aluminum(III) salts to coagulate silica particle suspension. Acta hydrochim hydrobiol 31:145–151 Zhang P, Hahn HH, Hoffmann E (2003) Different behavior of iron (III) and aluminum(III) salts to coagulate silica particle suspension. Acta hydrochim hydrobiol 31:145–151
242.
go back to reference Rykowska I, Wasiak W, Byra J (2008) Extraction of copper ions using silica gel with chemically modified surface. Chem Pap 62:255–259 Rykowska I, Wasiak W, Byra J (2008) Extraction of copper ions using silica gel with chemically modified surface. Chem Pap 62:255–259
243.
go back to reference Batley GE, Farrar YJ (1978) Irradiation techniques for the release of bound heavy metals in natural waters and blood. Anal Chim Acta 99:283–292 Batley GE, Farrar YJ (1978) Irradiation techniques for the release of bound heavy metals in natural waters and blood. Anal Chim Acta 99:283–292
244.
go back to reference Srivastava V, Weng CH, Singh VK, Sharma YC (2011) Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J Chem Eng Data 56:1414–1422 Srivastava V, Weng CH, Singh VK, Sharma YC (2011) Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J Chem Eng Data 56:1414–1422
245.
go back to reference Zamboulis D, Peleka EN, Lazaridis NK, Matis KA (2011) Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J Chem Technol Biotechnol 86:335–344 Zamboulis D, Peleka EN, Lazaridis NK, Matis KA (2011) Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J Chem Technol Biotechnol 86:335–344
246.
go back to reference Li YH, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39:605 Li YH, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39:605
247.
go back to reference Hu J, Chen GH, Lo IMC (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536 Hu J, Chen GH, Lo IMC (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536
248.
go back to reference Hu J, Lo IMC, Chen G (2004) Removal of Cr(VI) by magnetite nanoparticles. Water Sci Technol 50:139–146 Hu J, Lo IMC, Chen G (2004) Removal of Cr(VI) by magnetite nanoparticles. Water Sci Technol 50:139–146
249.
go back to reference Peng Y, Liu D, Fan M, Yang D, Zhu R, Ge F, Zhu J, He H (2010) Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J Hazard Mater 173:614–621 Peng Y, Liu D, Fan M, Yang D, Zhu R, Ge F, Zhu J, He H (2010) Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J Hazard Mater 173:614–621
250.
go back to reference Hu J, Lo IMC, Chen G (2005) Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 21:11173–11179 Hu J, Lo IMC, Chen G (2005) Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 21:11173–11179
251.
go back to reference Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B 103:523–529 Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B 103:523–529
252.
go back to reference Gregorio-Jauregui KM, Pineda MG, Rivera-Salinas JE, Hurtado G, Saade H, Martinez JL, Ilyina A, Lopez RG (2012) One-step method for preparation of magnetic nanoparticles coated with chitosan. J Nanomater. Article ID 813958. doi:10.1155/2012/813958 Gregorio-Jauregui KM, Pineda MG, Rivera-Salinas JE, Hurtado G, Saade H, Martinez JL, Ilyina A, Lopez RG (2012) One-step method for preparation of magnetic nanoparticles coated with chitosan. J Nanomater. Article ID 813958. doi:10.​1155/​2012/​813958
253.
go back to reference Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332 Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332
254.
go back to reference Ballav N, Choi HJ, Mishra SB, Maity A (2014) Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI). J Ind Eng Chem. doi:10.1016/j.jiec.2014.01.007 Ballav N, Choi HJ, Mishra SB, Maity A (2014) Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI). J Ind Eng Chem. doi:10.​1016/​j.​jiec.​2014.​01.​007
255.
go back to reference Yao W, Ni T, Chen S, Li H, Lu Y (2014) Graphene/Fe3O4@polypyrrole nanocomposites as a synergistic adsorbent for Cr(VI) ion removal. Compos Sci Technol 99:15–22 Yao W, Ni T, Chen S, Li H, Lu Y (2014) Graphene/Fe3O4@polypyrrole nanocomposites as a synergistic adsorbent for Cr(VI) ion removal. Compos Sci Technol 99:15–22
256.
go back to reference Masoumi A, Ghaemy M, Bakht AN (2014) Removal of metal ions from water using poly(MMA-co-MA)/modified-Fe3O4 magnetic nanocomposite: isotherm and kinetic study. Ind Eng Chem Res 53:8188–8197 Masoumi A, Ghaemy M, Bakht AN (2014) Removal of metal ions from water using poly(MMA-co-MA)/modified-Fe3O4 magnetic nanocomposite: isotherm and kinetic study. Ind Eng Chem Res 53:8188–8197
257.
go back to reference Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H (2014) Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem Eng J 241:175–183 Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H (2014) Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem Eng J 241:175–183
258.
go back to reference Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82 Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82
259.
go back to reference Lan A, Leng Z, Guo N, Wu X, Gan S (2014) Sesbania gum-based magnetic carbonaceous nanocomposites: facile fabrication and adsorption behavior. Colloids Surf A Physicochem Eng Asp 446:163–171 Lan A, Leng Z, Guo N, Wu X, Gan S (2014) Sesbania gum-based magnetic carbonaceous nanocomposites: facile fabrication and adsorption behavior. Colloids Surf A Physicochem Eng Asp 446:163–171
260.
go back to reference Sheha RR (2012) Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. J Colloid Interface Sci 388(2012):21–30 Sheha RR (2012) Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. J Colloid Interface Sci 388(2012):21–30
261.
go back to reference Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026 Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026
262.
go back to reference Barquist K, Larsen SC (2010) Chromate adsorption on bifunctional, magnetic zeolite composites. Microporous Mesoporous Mater 130:197–202 Barquist K, Larsen SC (2010) Chromate adsorption on bifunctional, magnetic zeolite composites. Microporous Mesoporous Mater 130:197–202
263.
go back to reference Ratnamala GM, Vidya K, Srinikethan G (2012) Removal of remazal brilliant blue dye from dye-contaminated water by adsorption using red mud: equilibrium, kinetic and thermodynamic studies. Water Air Soil Pollut 223(9):6187–6199 Ratnamala GM, Vidya K, Srinikethan G (2012) Removal of remazal brilliant blue dye from dye-contaminated water by adsorption using red mud: equilibrium, kinetic and thermodynamic studies. Water Air Soil Pollut 223(9):6187–6199
264.
go back to reference Liu H, You L, Ye X, Li W, Wu Z (2008) Adsorption kinetics of an organic dye by wet hybrid gel monoliths. J Sol–Gel Sci Technol 45(3):279–290 Liu H, You L, Ye X, Li W, Wu Z (2008) Adsorption kinetics of an organic dye by wet hybrid gel monoliths. J Sol–Gel Sci Technol 45(3):279–290
265.
go back to reference Kant S, Kalia S, Kumar A (2013) A novel nanocomposite of polyaniline and Fe0.01Ni0.01Zn0.98O: photocatalytic, electrical and antibacterial properties. J Alloys Compd 578:249–256 Kant S, Kalia S, Kumar A (2013) A novel nanocomposite of polyaniline and Fe0.01Ni0.01Zn0.98O: photocatalytic, electrical and antibacterial properties. J Alloys Compd 578:249–256
266.
go back to reference Fang R, Ge X, Du M, Li Z, Yang C, Fang B, Liang Y (2014) Preparation of silver/grapheme/polymer hybrid microspheres and the study of photocatalytic degradation. Colloid Polym Sci. doi:10.1007/s00396-013-3148X, In press Fang R, Ge X, Du M, Li Z, Yang C, Fang B, Liang Y (2014) Preparation of silver/grapheme/polymer hybrid microspheres and the study of photocatalytic degradation. Colloid Polym Sci. doi:10.​1007/​s00396-013-3148X, In press
267.
go back to reference Amen S, Akhtar MS, Kim YS, Yang OB, Shin HS (2011) An effective nanocomposite of polyaniline and ZnO: preparation, characterization and its photocatalytic activity. Sci World J 289(4):415–425 Amen S, Akhtar MS, Kim YS, Yang OB, Shin HS (2011) An effective nanocomposite of polyaniline and ZnO: preparation, characterization and its photocatalytic activity. Sci World J 289(4):415–425
268.
go back to reference Agullo-Barcelob M, Polo-Lopez MI, Lucenab F, Jofre J, Fernandez-Ibanez P (2013) Solar advanced oxidation processes as disinfection tertiary treatments for real wastewater: implications for water reclamation. Appl Catal B 136–137:341–350 Agullo-Barcelob M, Polo-Lopez MI, Lucenab F, Jofre J, Fernandez-Ibanez P (2013) Solar advanced oxidation processes as disinfection tertiary treatments for real wastewater: implications for water reclamation. Appl Catal B 136–137:341–350
269.
go back to reference Surpaţeanu M, Zaharia C (2004) Advanced oxidation processes for decolorization of aqueous solution containing acid red G azo dye. Cent Eur J Chem 2(4):573–588 Surpaţeanu M, Zaharia C (2004) Advanced oxidation processes for decolorization of aqueous solution containing acid red G azo dye. Cent Eur J Chem 2(4):573–588
270.
go back to reference Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interf Sci 201–202:68–93 Reddy DHK, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interf Sci 201–202:68–93
271.
go back to reference Yang N, Zhu S, Zhang D, Xu S (2008) Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater Lett 62(4–5):645–647 Yang N, Zhu S, Zhang D, Xu S (2008) Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater Lett 62(4–5):645–647
272.
go back to reference Zhu HY, Jiang R, Xiao L, Li W (2010) A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye. J Hazard Mater 179(1–3):251–257 Zhu HY, Jiang R, Xiao L, Li W (2010) A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye. J Hazard Mater 179(1–3):251–257
273.
go back to reference Li Y, Chang RC, Zheng P, Ma X (2012) Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes. Carbohydr Polym 87(3):1919–1924 Li Y, Chang RC, Zheng P, Ma X (2012) Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes. Carbohydr Polym 87(3):1919–1924
274.
go back to reference Jiang R, Hua-Yue Z, Guang-Ming Z, Xiao L, Yu-Jiang G (2010) Synergy of adsorption and visible light photocatalysis to decolor methyl orange by activated carbon/nanosized CdS/chitosan composite. J South Cent Univ Technol 17(6):1223–1229 Jiang R, Hua-Yue Z, Guang-Ming Z, Xiao L, Yu-Jiang G (2010) Synergy of adsorption and visible light photocatalysis to decolor methyl orange by activated carbon/nanosized CdS/chitosan composite. J South Cent Univ Technol 17(6):1223–1229
275.
go back to reference Pourjavadi A, Hosseini SH, Seidi F, Soleyman R (2013) Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym Int 62:1038–1044 Pourjavadi A, Hosseini SH, Seidi F, Soleyman R (2013) Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym Int 62:1038–1044
276.
go back to reference Fan L, Luo C, Sun M, Li X, Lu F, Qiu H (2012) Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour Technol 114:703–706 Fan L, Luo C, Sun M, Li X, Lu F, Qiu H (2012) Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour Technol 114:703–706
277.
go back to reference Zhu HY, Fu YQ, Jiang R, Yao J, Xiao L, Zeng GM (2012) Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour Technol 105:24–30 Zhu HY, Fu YQ, Jiang R, Yao J, Xiao L, Zeng GM (2012) Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour Technol 105:24–30
278.
go back to reference Chaterjee S, Lee MW, Woo SH (2010) Adsorption of Congo red by chitosan hydogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806 Chaterjee S, Lee MW, Woo SH (2010) Adsorption of Congo red by chitosan hydogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806
279.
go back to reference Ahmed MA, Khafagy RM, Bishay ST, Saleh NM (2013) Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe1.46La0.04O4/polymer core–shell nanocomposites. J Alloys Compd 578:121–131 Ahmed MA, Khafagy RM, Bishay ST, Saleh NM (2013) Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe1.46La0.04O4/polymer core–shell nanocomposites. J Alloys Compd 578:121–131
280.
go back to reference Mittal H, Mishra SB (2014) Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr Polym 101:1255–1264 Mittal H, Mishra SB (2014) Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr Polym 101:1255–1264
281.
go back to reference Chang PR, Zheng P, Liu B, Anderson DP, Yu J, Ma X (2011) Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes. J Hazard Mater 186:2144–2150 Chang PR, Zheng P, Liu B, Anderson DP, Yu J, Ma X (2011) Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes. J Hazard Mater 186:2144–2150
282.
go back to reference Wang G, Sun Q, Zhang Y, Fan J, Ma L (2010) Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination 263:183–188 Wang G, Sun Q, Zhang Y, Fan J, Ma L (2010) Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination 263:183–188
283.
go back to reference Annunciado R, Sydenstricker THD, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50(11):1340–1346 Annunciado R, Sydenstricker THD, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50(11):1340–1346
284.
go back to reference Ahmad AL, Sumathi S, Hameed BH (2005) Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies. Water Res 39(12):2483–2494 Ahmad AL, Sumathi S, Hameed BH (2005) Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies. Water Res 39(12):2483–2494
285.
go back to reference Husseien M, Amer AA, El-maghraby A (2008) Experimental investigation of thermal modification influence on sorption qualities of barley straw. J Appl Sci Res 4(6):652–657 Husseien M, Amer AA, El-maghraby A (2008) Experimental investigation of thermal modification influence on sorption qualities of barley straw. J Appl Sci Res 4(6):652–657
286.
go back to reference Yang C (2007) Electrochemical coagulation for oily water demulsification. Sep Purif Technol 54(3):388–395 Yang C (2007) Electrochemical coagulation for oily water demulsification. Sep Purif Technol 54(3):388–395
287.
go back to reference Ji F, Li C, Dong X, Li Y, Wang D (2009) Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile. J Hazard Mater 164:1346–1351 Ji F, Li C, Dong X, Li Y, Wang D (2009) Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile. J Hazard Mater 164:1346–1351
288.
go back to reference Ahmad AL, Ismail S, Bhatia S (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157:87–95 Ahmad AL, Ismail S, Bhatia S (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157:87–95
289.
go back to reference Zhu Q, Tao F, Pan Q (2010) Fast and selective removal of oils from water surface via highly hydrophobic core-shell Fe2O3@C nanoparticles under magnetic field. ACS Appl Mater Interfaces 2:3141–3146 Zhu Q, Tao F, Pan Q (2010) Fast and selective removal of oils from water surface via highly hydrophobic core-shell Fe2O3@C nanoparticles under magnetic field. ACS Appl Mater Interfaces 2:3141–3146
290.
go back to reference Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704 Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704
291.
go back to reference Chen M, Jiang W, Wang F, Shen P, Ma P, Gu J, Mao J, Li F (2013) Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for removal of oils from water surface. Appl Surf Sci 286:249–256 Chen M, Jiang W, Wang F, Shen P, Ma P, Gu J, Mao J, Li F (2013) Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for removal of oils from water surface. Appl Surf Sci 286:249–256
292.
go back to reference Liu Z, Yang H, Zhang H, Huang C, Li L (2012) Oil-field wastewater purification by magnetic separation technique using a novel magnetic nanoparticle. Cryogenics 52:699–703 Liu Z, Yang H, Zhang H, Huang C, Li L (2012) Oil-field wastewater purification by magnetic separation technique using a novel magnetic nanoparticle. Cryogenics 52:699–703
293.
go back to reference Tempest P, Bonini M, Ridi F, Bagiloni P (2014) Magnetic polystyrene nanocomposite for separation of oil and water. J Mater Chem A. doi:10.1039/c3TA139981C, In Press Tempest P, Bonini M, Ridi F, Bagiloni P (2014) Magnetic polystyrene nanocomposite for separation of oil and water. J Mater Chem A. doi:10.​1039/​c3TA139981C, In Press
294.
go back to reference de Souza Jr FG, Jessica AM, Cezar HMR, Jose CP (2010) A magnetic composite for cleaning of oil spills on water. Macromol Mater Eng 295:942–948 de Souza Jr FG, Jessica AM, Cezar HMR, Jose CP (2010) A magnetic composite for cleaning of oil spills on water. Macromol Mater Eng 295:942–948
295.
go back to reference Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181 Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181
296.
go back to reference Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67:55–60 Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67:55–60
297.
go back to reference Duran JDG, Arias JL, Gallardo V, Delgado AV (2008) Magnetic colloids as drug vehicles. J Pharm Sci 97:2948–2983 Duran JDG, Arias JL, Gallardo V, Delgado AV (2008) Magnetic colloids as drug vehicles. J Pharm Sci 97:2948–2983
298.
go back to reference McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–167 McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–167
299.
go back to reference Cheon SJ (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99 Cheon SJ (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99
300.
go back to reference Goya GF, Grazu V, Ibarra M (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4:1–16 Goya GF, Grazu V, Ibarra M (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4:1–16
301.
go back to reference Chen D, Jiang M, Li N, Gu H, Xu Q, Ge J, Xia X, Lu J (2010) Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery. J Mater Chem 20:6422–6429 Chen D, Jiang M, Li N, Gu H, Xu Q, Ge J, Xia X, Lu J (2010) Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery. J Mater Chem 20:6422–6429
302.
go back to reference Bardajee GR, Hooshyar Z, Rastgo F (2013) Kappa carrageenan-g-poly (acrylic acid)/SPION nanocomposite as a novel stimuli-sensitive drug delivery system. Colloid Polym Sci 291:2791–2803 Bardajee GR, Hooshyar Z, Rastgo F (2013) Kappa carrageenan-g-poly (acrylic acid)/SPION nanocomposite as a novel stimuli-sensitive drug delivery system. Colloid Polym Sci 291:2791–2803
303.
go back to reference Bajpai AK, Gupta R (2011) Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. J Mater Sci Mater Med 22:357–369 Bajpai AK, Gupta R (2011) Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. J Mater Sci Mater Med 22:357–369
304.
go back to reference Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J et al (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiment. Bioconjug Chem 16:1181–1188 Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J et al (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiment. Bioconjug Chem 16:1181–1188
305.
go back to reference Zhang J, Rana S, Srivastava RS, Misra RDK (2008) On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol–functionalized magnetite nanoparticles. Acta Biomater 4:40–48 Zhang J, Rana S, Srivastava RS, Misra RDK (2008) On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol–functionalized magnetite nanoparticles. Acta Biomater 4:40–48
306.
go back to reference Hwu JR, Lin YS, Josephrajan T, Hsu M, Cheng F, Yeh C et al (2007) Targeted paclitaxel by conjugation to iron oxide and gold nanoparticle. J Am Chem Soc 131:66–68 Hwu JR, Lin YS, Josephrajan T, Hsu M, Cheng F, Yeh C et al (2007) Targeted paclitaxel by conjugation to iron oxide and gold nanoparticle. J Am Chem Soc 131:66–68
307.
go back to reference Wu P, Wang W, Huang Y, Sheu H, Lo Y, Tsai T et al (2007) Porous iron oxide-based nanorods developed as delivery nanocapsules. Chem Eur J 13:3878–3885 Wu P, Wang W, Huang Y, Sheu H, Lo Y, Tsai T et al (2007) Porous iron oxide-based nanorods developed as delivery nanocapsules. Chem Eur J 13:3878–3885
308.
go back to reference Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021 Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021
309.
go back to reference Groman EV, Bouchard JC, Reinhardt CP, Vaccaro DE (2005) Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labelling, and cell sorting agents. Bioconjug Chem 18:1763–1771 Groman EV, Bouchard JC, Reinhardt CP, Vaccaro DE (2005) Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labelling, and cell sorting agents. Bioconjug Chem 18:1763–1771
310.
go back to reference Schellenberger EA, Reynolds F, Weissleder R, Josephson L (2004) Surface functionalized nanoparticle library yields probes for apoptotic cells. Chem Biol Chem 5:275–279 Schellenberger EA, Reynolds F, Weissleder R, Josephson L (2004) Surface functionalized nanoparticle library yields probes for apoptotic cells. Chem Biol Chem 5:275–279
311.
go back to reference Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer poly ethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13:5554–5570 Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer poly ethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13:5554–5570
312.
go back to reference Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44:842–852 Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44:842–852
313.
go back to reference Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490 Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490
314.
go back to reference Vannier EA, Cohen-Jonathan S, Gautier J, Herve-Aubert K, Munnier E, Souce M, Legras P, Passirani C, Chourpa I (2012) Pegylated magnetic nanocarriers for doxorubicin delivery: a quantitative determination of stealthiness in vitro and in vivo. Eur J Pharm Biopharm 81:498–505 Vannier EA, Cohen-Jonathan S, Gautier J, Herve-Aubert K, Munnier E, Souce M, Legras P, Passirani C, Chourpa I (2012) Pegylated magnetic nanocarriers for doxorubicin delivery: a quantitative determination of stealthiness in vitro and in vivo. Eur J Pharm Biopharm 81:498–505
315.
go back to reference Hoare T et al (2009) A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9:3651–3657 Hoare T et al (2009) A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9:3651–3657
316.
go back to reference Zhang D, Sun P, Li P, Xue A, Zhang X, Zhang H, Jin X (2013) A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials 34:10258–10266 Zhang D, Sun P, Li P, Xue A, Zhang X, Zhang H, Jin X (2013) A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials 34:10258–10266
317.
go back to reference Arias JL, Reddy LH, Couvreur P (2012) Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Mater Chem 22:7622–7632 Arias JL, Reddy LH, Couvreur P (2012) Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Mater Chem 22:7622–7632
318.
go back to reference Wu Y, Chu M, Shi B, Li Z (2011) A novel magneto-fluorescent nano-bioprobe for cancer cell targeting, imaging and collection. Appl Biochem Biotechnol 163:813–825 Wu Y, Chu M, Shi B, Li Z (2011) A novel magneto-fluorescent nano-bioprobe for cancer cell targeting, imaging and collection. Appl Biochem Biotechnol 163:813–825
319.
go back to reference Santos DP, Ruiz MA, Gallardo V, Zanoni MVB, Arias JL (2011) Multifunctional antitumor magnetite/chitosan-L-glutamic acid (core/shell) nanocomposites. J Nanoparticle Res 13:4311–4323 Santos DP, Ruiz MA, Gallardo V, Zanoni MVB, Arias JL (2011) Multifunctional antitumor magnetite/chitosan-L-glutamic acid (core/shell) nanocomposites. J Nanoparticle Res 13:4311–4323
320.
go back to reference Livingston JD (1996) Driving force: the natural magic of magnets. Harvard University Press, Cambridge Livingston JD (1996) Driving force: the natural magic of magnets. Harvard University Press, Cambridge
321.
go back to reference Elster A, Burdette J (2001) Questions and answers in magnetic resonance imaging. Mosby, St Louis Elster A, Burdette J (2001) Questions and answers in magnetic resonance imaging. Mosby, St Louis
322.
go back to reference Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A 262:87–93 Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A 262:87–93
323.
go back to reference Yu J, Lee CW, Im SS, Lee JS (2004) Structure and magnetic properties of SiO2 coated Fe2O3 nanoparticles synthesized by chemical vapor condensation process. Rev Adv Mater Sci 4:55–59 Yu J, Lee CW, Im SS, Lee JS (2004) Structure and magnetic properties of SiO2 coated Fe2O3 nanoparticles synthesized by chemical vapor condensation process. Rev Adv Mater Sci 4:55–59
324.
go back to reference Wassel RA, Grady B, Kopke RD, Dormer KJ (2007) Dispersion of super paramagnetic iron oxide nanoparticles in poly(d, l-lactide-co-glycolide) microparticles. Colloids Surf A 292:125–130 Wassel RA, Grady B, Kopke RD, Dormer KJ (2007) Dispersion of super paramagnetic iron oxide nanoparticles in poly(d, l-lactide-co-glycolide) microparticles. Colloids Surf A 292:125–130
325.
go back to reference Zhou Y, Wang SX, Ding BJ, Yang ZM (2008) Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem Eng J 138:578–585 Zhou Y, Wang SX, Ding BJ, Yang ZM (2008) Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem Eng J 138:578–585
326.
go back to reference Zhu L, Wang D, Wei X, Zhu X, Li J, Zhu B, Yan D (2013) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 169:228–238 Zhu L, Wang D, Wei X, Zhu X, Li J, Zhu B, Yan D (2013) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 169:228–238
327.
go back to reference Shi J, Yu X, Wang L, Liu Y, Gao J, Zhang J, Ma R, Liu R, Zhang Z (2013) PEGylated fullrene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials 34:9666–9677 Shi J, Yu X, Wang L, Liu Y, Gao J, Zhang J, Ma R, Liu R, Zhang Z (2013) PEGylated fullrene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials 34:9666–9677
328.
go back to reference Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8328–8392 Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8328–8392
329.
go back to reference Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32:9364–9373 Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32:9364–9373
330.
go back to reference Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32:7130–7150 Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32:7130–7150
331.
go back to reference Nitin N, Laconte LEW, Zurkiya O, Hu X, Bao G (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 9:706–712 Nitin N, Laconte LEW, Zurkiya O, Hu X, Bao G (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 9:706–712
Metadata
Title
Magnetic polymer nanocomposites for environmental and biomedical applications
Authors
Susheel Kalia
Sarita Kango
Amit Kumar
Yuvaraj Haldorai
Bandna Kumari
Rajesh Kumar
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 9/2014
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-014-3357-y

Other articles of this Issue 9/2014

Colloid and Polymer Science 9/2014 Go to the issue

Premium Partners