Skip to main content
Top
Published in: Physics of Metals and Metallography 4/2019

01-04-2019 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetic Properties of the Fe63.5Ni10Cu1Nb3Si13.5B9 Alloy Nanocrystallized in the Presence of Tensile Stresses

Authors: V. A. Lukshina, N. V. Dmitrieva, E. G. Volkova, D. A. Shishkin

Published in: Physics of Metals and Metallography | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of 10 at % Ni, which was introduced into the classic Finemet Fe73.5Cu1Nb3Si13.5B9 at the expense of the Fe content, on the magnetic properties of the composition has been considered. The alloy was subjected to nanocrystallizing annealing in the presence of tensile stresses and in their absence. It is shown that, similarly to the Ni-free alloy, in the Fe63.5Ni10Cu1Nb3Si13.5B9 alloy subjected to thermomechanical treatment, the magnetic anisotropy with the easy magnetization direction across the ribbon axis (transverse induced magnetic anisotropy) is induced. It was found that the 10 at % Ni addition almost does not affect the value of magnetic anisotropy constant induced under thermomechanical treatment and decelerates the process of magnetic anisotropy inducing at σ ≤ 200 MPa. The Ni-containing alloy subjected to nanocrystallizing annealing (at 520°C) in the presence of tensile stresses and in their absence demonstrates the more than 200-fold increase in the coercive force as the annealing time increases from 1 to 4 h, whereas the coercive force of the Ni-free alloy is almost unchanged. This is likely to be related to the appearance of new structural components in the Ni-alloyed composition upon annealing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. A. Skulkina, O. A. Ivanov, A. K. Mazeeva, P. A. Kuznetsov, E. A. Stepanova, O. V. Blinova, and E. A. Mikhalitsyna, “Magnetization processes in ribbons of soft magnetic amorphous alloys,” Phys. Met. Metallogr. 119, 127–133 (2018).CrossRef N. A. Skulkina, O. A. Ivanov, A. K. Mazeeva, P. A. Kuznetsov, E. A. Stepanova, O. V. Blinova, and E. A. Mikhalitsyna, “Magnetization processes in ribbons of soft magnetic amorphous alloys,” Phys. Met. Metallogr. 119, 127–133 (2018).CrossRef
2.
go back to reference N. V. Dmitrieva, V. A. Lukshina, E. G. Volkova, B. N. Philippov, and A. P. Potapov, “Magnetic properties and thermal stability of the soft magnetic alloy (Fe0.7Co0.3)88Hf4Mo2Zr1B4Cu1 nanocrystallized in the presence of an alternating magnetic field,” Phys. Met. Metallogr. 118, 946–953 (2017).CrossRef N. V. Dmitrieva, V. A. Lukshina, E. G. Volkova, B. N. Philippov, and A. P. Potapov, “Magnetic properties and thermal stability of the soft magnetic alloy (Fe0.7Co0.3)88Hf4Mo2Zr1B4Cu1 nanocrystallized in the presence of an alternating magnetic field,” Phys. Met. Metallogr. 118, 946–953 (2017).CrossRef
3.
go back to reference V. S. Tsepelev, Yu. N. Starodubtsev, V. A. Zelenin, V. A. Kataev, V. Ya. Belozerov, and V. V. Konashkov, “Dilatometric analysis of the process of the nanocrystallization of Fe72.5Cu1Nb2Mo1.5Si14B9 soft magnetic alloy,” Phys. Met. Metallogr. 118, 553–557 (2017).CrossRef V. S. Tsepelev, Yu. N. Starodubtsev, V. A. Zelenin, V. A. Kataev, V. Ya. Belozerov, and V. V. Konashkov, “Dilatometric analysis of the process of the nanocrystallization of Fe72.5Cu1Nb2Mo1.5Si14B9 soft magnetic alloy,” Phys. Met. Metallogr. 118, 553–557 (2017).CrossRef
4.
go back to reference P. Agudo and M. Vázguez, “Influence of Ni on structural and magnetic properties of Fe73.5 – xNixSi13.5B9Nb3Cu1 (0 ≤ x ≤ 25) alloys,” J. Appl. Phys. 97, 023901 (2005).CrossRef P. Agudo and M. Vázguez, “Influence of Ni on structural and magnetic properties of Fe73.5 – xNixSi13.5B9Nb3Cu1 (0 ≤ x ≤ 25) alloys,” J. Appl. Phys. 97, 023901 (2005).CrossRef
5.
go back to reference P. Duhaj, P. Švec, J. Sitec, and D. Janičkovič, “Thermodynamic, kinetic and structural aspects of the formation of nanocrystalline phases in Fe73.5 – xNixCu1Nb3Si13.5B9 alloys,” Mater. Sci. Eng., A 304–306, 178–186 (2001).CrossRef P. Duhaj, P. Švec, J. Sitec, and D. Janičkovič, “Thermodynamic, kinetic and structural aspects of the formation of nanocrystalline phases in Fe73.5 – xNixCu1Nb3Si13.5B9 alloys,” Mater. Sci. Eng., A 304–306, 178–186 (2001).CrossRef
6.
go back to reference V. A. Kataev, Yu. N. Starodubtsev, E. A. Mikhalitsyna, V. Ya. Belozerov, and R. V. Tsyngalov, “Magnetic properties and induced anisotropy of nanocrystalline Fe72.5 – NixCu1.1Nb1.9Mo1.5Si14.3B8.7,” Phys. Met. Metallogr. 118, 558–563 (2017).CrossRef V. A. Kataev, Yu. N. Starodubtsev, E. A. Mikhalitsyna, V. Ya. Belozerov, and R. V. Tsyngalov, “Magnetic properties and induced anisotropy of nanocrystalline Fe72.5 – NixCu1.1Nb1.9Mo1.5Si14.3B8.7,” Phys. Met. Metallogr. 118, 558–563 (2017).CrossRef
7.
go back to reference Y. Yoshizawa, S. Fujii, D. H. Ping, M. Ohnuma, and K. Hono, “Magnetic properties of nanocrystalline FeMCuNbSiB alloys (M: Co, Ni),” Scr. Mater. 48, 863–868 (2003).CrossRef Y. Yoshizawa, S. Fujii, D. H. Ping, M. Ohnuma, and K. Hono, “Magnetic properties of nanocrystalline FeMCuNbSiB alloys (M: Co, Ni),” Scr. Mater. 48, 863–868 (2003).CrossRef
8.
go back to reference Y. Y. Jia, Z. Wang, R-M. Shi, J. Yang, H-J. Kang, and T. Lin, “Influence of Ni addition on structure and magnetic properties of FeCo-based Finemet-type alloys,” J. Appl. Phys. 109, 073917 (2011).CrossRef Y. Y. Jia, Z. Wang, R-M. Shi, J. Yang, H-J. Kang, and T. Lin, “Influence of Ni addition on structure and magnetic properties of FeCo-based Finemet-type alloys,” J. Appl. Phys. 109, 073917 (2011).CrossRef
9.
go back to reference A. A. Glazer, N. M. Kleinerman, V. A. Lukshina, A. P. Potapov, and V. V. Serikov, “Thermomechanical treatment of nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9,” Fiz. Met. Metalloved., No. 12, 56–61 (1991). A. A. Glazer, N. M. Kleinerman, V. A. Lukshina, A. P. Potapov, and V. V. Serikov, “Thermomechanical treatment of nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9,” Fiz. Met. Metalloved., No. 12, 56–61 (1991).
10.
go back to reference N. Iturriza, L. Fernández, M. Ipatov, G. Vara, A. R. Pierna, J. J. del Val, A. Chizhik, and J. Conzález, “Nanostructure and magnetic properties of Ni-substituted finemet ribbons,” J. Magn. Magn. Mater. 316, e74–e77 (2007).CrossRef N. Iturriza, L. Fernández, M. Ipatov, G. Vara, A. R. Pierna, J. J. del Val, A. Chizhik, and J. Conzález, “Nanostructure and magnetic properties of Ni-substituted finemet ribbons,” J. Magn. Magn. Mater. 316, e74–e77 (2007).CrossRef
11.
go back to reference N. M. Kleinerman, V. V. Serikov, V. A. Lukshina, N. V. Dmitrieva, and A. P. Potapov, “Nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9, its structure and magnetic properties: I. The investigation of the process of crystallization from the amorphous state under the effect of various external factors,” Phys. Met. Metallogr. 91, 578–582 (2001). N. M. Kleinerman, V. V. Serikov, V. A. Lukshina, N. V. Dmitrieva, and A. P. Potapov, “Nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9, its structure and magnetic properties: I. The investigation of the process of crystallization from the amorphous state under the effect of various external factors,” Phys. Met. Metallogr. 91, 578–582 (2001).
12.
go back to reference N. V. Dmitrieva, V. A. Lukshina, E. G. Volkova, N. M. Kleinerman, V. V. Serikov, and A. P. Potapov, “Induced magnetic anisotropy and structure of nanocrystalline Fe–Co–Cu–Nb–Si–B alloys with different content of Co: I. Stress-annealing-induced magnetic anisotropy and its thermal stability,” Phys. Met. Metallogr. 107, 352–358 (2009).CrossRef N. V. Dmitrieva, V. A. Lukshina, E. G. Volkova, N. M. Kleinerman, V. V. Serikov, and A. P. Potapov, “Induced magnetic anisotropy and structure of nanocrystalline Fe–Co–Cu–Nb–Si–B alloys with different content of Co: I. Stress-annealing-induced magnetic anisotropy and its thermal stability,” Phys. Met. Metallogr. 107, 352–358 (2009).CrossRef
13.
go back to reference M. Ohnuma, K. Hono, T. Yanai, M. Nakano, H. Fukunaga, and Y. Yoshizawa, “Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy,” Appl. Phys. Lett. 86, 152513 (2005).CrossRef M. Ohnuma, K. Hono, T. Yanai, M. Nakano, H. Fukunaga, and Y. Yoshizawa, “Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy,” Appl. Phys. Lett. 86, 152513 (2005).CrossRef
14.
go back to reference N. V. Ershov, V. A. Lukshina, V. I. Fedorov, N. V. Dmitrieva, Yu. P. Chernenkov, and A. P. Potapov, “Effect of thermomagnetic and thermomechanical treatments on the magnetic properties and structure of the nanocrystalline soft magnetic alloy Fe81Si6Nb3B9Cu1,” Phys. Solid State 55, 508–519 (2013).CrossRef N. V. Ershov, V. A. Lukshina, V. I. Fedorov, N. V. Dmitrieva, Yu. P. Chernenkov, and A. P. Potapov, “Effect of thermomagnetic and thermomechanical treatments on the magnetic properties and structure of the nanocrystalline soft magnetic alloy Fe81Si6Nb3B9Cu1,” Phys. Solid State 55, 508–519 (2013).CrossRef
Metadata
Title
Magnetic Properties of the Fe63.5Ni10Cu1Nb3Si13.5B9 Alloy Nanocrystallized in the Presence of Tensile Stresses
Authors
V. A. Lukshina
N. V. Dmitrieva
E. G. Volkova
D. A. Shishkin
Publication date
01-04-2019
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2019
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19040070

Other articles of this Issue 4/2019

Physics of Metals and Metallography 4/2019 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

New Ta3Ве Phase in the Film Coatings of Tantalum–Beryllium Alloys