Skip to main content
Top
Published in: Physics of Metals and Metallography 4/2019

01-04-2019 | STRENGTH AND PLASTICITY

Constitutive Equation for the Hot Deformation Behavior of TiNiNb Shape Memory Alloy

Authors: Liu Junwei, Lu Shiqiang, Yao Qi, Zhao Zhigang

Published in: Physics of Metals and Metallography | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research, hot deformation behavior of NiTiNb alloy was explored. Then, the activation energy and the constitutive equation were evaluated and obtained. The results show that the compressive process of TiNiNb alloy is a typical rheological process. The thermal activation energy of TiNiNb alloy in the temperature range of 720–840°C is 198.004 kJ/mol. Both NiTi matrix phase and Nb solution have been refined. The amounts of (Ti, Nb)2Ni hard brittle phase and Nb solution were gradually reduced with increasing the strain rate and deformation temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Wang, Z. Lu, K. Zhang, and D. Zhang, “Thermal mechanical processing effects on microstructure evolution and mechanical properties of the sintered Ti–22Al–25Nb alloy, Mater. 9 (3), 189 (2016).CrossRef Y. Wang, Z. Lu, K. Zhang, and D. Zhang, “Thermal mechanical processing effects on microstructure evolution and mechanical properties of the sintered Ti–22Al–25Nb alloy, Mater. 9 (3), 189 (2016).CrossRef
2.
go back to reference M. Xiao, F. Li, W. Zhao, and G. Yang, “Constitutive equation for elevated temperature flow behavior of TiNiNb alloy based on orthogonal analysis,” Mater. Des. 35, 184–193 (2012).CrossRef M. Xiao, F. Li, W. Zhao, and G. Yang, “Constitutive equation for elevated temperature flow behavior of TiNiNb alloy based on orthogonal analysis,” Mater. Des. 35, 184–193 (2012).CrossRef
3.
go back to reference A. E. Medvedev, A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer, and F. Torre Dalla, “Microstructure and mechanical properties of Ti–15Zr alloy used as dental implant material, “J. Mech. Behav. Biomed. Mater. 62, 384–398 (2016).CrossRef A. E. Medvedev, A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer, and F. Torre Dalla, “Microstructure and mechanical properties of Ti–15Zr alloy used as dental implant material, “J. Mech. Behav. Biomed. Mater. 62, 384–398 (2016).CrossRef
4.
go back to reference J. Li, H. Wang, J. Liu, and J. Ruan, “Effects of Nb addition on microstructure and mechanical properties of TiNiNb alloys fabricated by elemental powder sintering, Mater. Sci. Eng., A 609, 235–240 (2014).CrossRef J. Li, H. Wang, J. Liu, and J. Ruan, “Effects of Nb addition on microstructure and mechanical properties of TiNiNb alloys fabricated by elemental powder sintering, Mater. Sci. Eng., A 609, 235–240 (2014).CrossRef
5.
go back to reference X -Q. Yin, C.-H. Park, Y.-F. Li, W.-J. Ye, Y.-T. Zuo, S.-W. Lee, J.-T. Yeom, and X.-J. Mi, “Mechanism of continuous dynamic recrystallization in a 50Ti–47Ni–3Fe shape memory alloy during hot compressive deformation,” J. Alloys Compd. 693, 426–431 (2016).CrossRef X -Q. Yin, C.-H. Park, Y.-F. Li, W.-J. Ye, Y.-T. Zuo, S.-W. Lee, J.-T. Yeom, and X.-J. Mi, “Mechanism of continuous dynamic recrystallization in a 50Ti–47Ni–3Fe shape memory alloy during hot compressive deformation,” J. Alloys Compd. 693, 426–431 (2016).CrossRef
6.
go back to reference A. E. Medvedev, A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer, and F. Torre Dalla, “Microstructure and mechanical properties of Ti–15Zr alloy used as dental implant material, “J. Mech. Behav. Biomed. Mater. 62, 384–398 (2016). A. E. Medvedev, A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer, and F. Torre Dalla, “Microstructure and mechanical properties of Ti–15Zr alloy used as dental implant material, “J. Mech. Behav. Biomed. Mater. 62, 384–398 (2016).
7.
go back to reference P. Jenei, H. Choi, A. Tóth, H. Choe, and J. Gubicza, “Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting,” J. Mech. Behav. Biomed. Mater. 63, 407–416 (2016).CrossRef P. Jenei, H. Choi, A. Tóth, H. Choe, and J. Gubicza, “Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting,” J. Mech. Behav. Biomed. Mater. 63, 407–416 (2016).CrossRef
8.
go back to reference D. Photiou, N. T. Panagiotopoulos, L. Koutsokeras, G. A. Evangelakis, and G. Constantinides, “Microstructure and nanomechanical properties of magnetron sputtered Ti−Nb films,” Surf. Coat. Technol. 302, 310–319 (2016).CrossRef D. Photiou, N. T. Panagiotopoulos, L. Koutsokeras, G. A. Evangelakis, and G. Constantinides, “Microstructure and nanomechanical properties of magnetron sputtered Ti−Nb films,” Surf. Coat. Technol. 302, 310–319 (2016).CrossRef
9.
go back to reference S. Guo, J. Zhang, X. Cheng, and X. Zhao, “A metastable β-type Ti–Nb binary alloy with low modulus and high strength,” J. Alloys Compd. 644, 411–415 (2015).CrossRef S. Guo, J. Zhang, X. Cheng, and X. Zhao, “A metastable β-type Ti–Nb binary alloy with low modulus and high strength,” J. Alloys Compd. 644, 411–415 (2015).CrossRef
10.
go back to reference H. Zhan, W. Zeng, G. Wang, D. Kent, and M. Dargusch, “On the deformation mechanisms and strain rate sensitivity of a metastable β Ti–Nb alloy,” Scr. Mater. 107, 34–37 (2015).CrossRef H. Zhan, W. Zeng, G. Wang, D. Kent, and M. Dargusch, “On the deformation mechanisms and strain rate sensitivity of a metastable β Ti–Nb alloy,” Scr. Mater. 107, 34–37 (2015).CrossRef
11.
go back to reference H. Tobe, H. Y. Kim, T. Inamura, H. Hosoda, T. H. Nam, and S. Miyazaki, “Effect of Nb content on deformation behavior and shape memory properties of Ti–Nb alloys,” J. Alloys Compd. 577, S435–S438 (2013).CrossRef H. Tobe, H. Y. Kim, T. Inamura, H. Hosoda, T. H. Nam, and S. Miyazaki, “Effect of Nb content on deformation behavior and shape memory properties of Ti–Nb alloys,” J. Alloys Compd. 577, S435–S438 (2013).CrossRef
12.
go back to reference B. Sharma, S. K. Vajpai, and K. Ameyama, “Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder,” J. Alloys Compd. 656, 978–986 (2016).CrossRef B. Sharma, S. K. Vajpai, and K. Ameyama, “Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder,” J. Alloys Compd. 656, 978–986 (2016).CrossRef
13.
go back to reference S. V. Mehtonen, E. J. Palmiere, R. D. K. Misra, L. P. Karjalainen, and D. A. Porter, “Dynamic restoration mechanisms in a Ti–Nb stabilized ferritic stainless steel during hot deformation,” Mater. Sci. Eng., A 601, 7–19 (2014).CrossRef S. V. Mehtonen, E. J. Palmiere, R. D. K. Misra, L. P. Karjalainen, and D. A. Porter, “Dynamic restoration mechanisms in a Ti–Nb stabilized ferritic stainless steel during hot deformation,” Mater. Sci. Eng., A 601, 7–19 (2014).CrossRef
14.
go back to reference D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, and F. Pyczak, “Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material,” J. Mech. Behav. Biomed. Mater. 28, 171–182 (2013).CrossRef D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, and F. Pyczak, “Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material,” J. Mech. Behav. Biomed. Mater. 28, 171–182 (2013).CrossRef
15.
go back to reference Y. Guo, K. Georgarakis, Y. Yokoyama, and A. R. Yavari, “On the mechanical properties of TiNb-based alloys,” J. Alloys Compd. 571, 25–30 (2013).CrossRef Y. Guo, K. Georgarakis, Y. Yokoyama, and A. R. Yavari, “On the mechanical properties of TiNb-based alloys,” J. Alloys Compd. 571, 25–30 (2013).CrossRef
16.
go back to reference Y. Mantani and K. Kudou, “Effect of plastic deformation on material properties and martensite structures in Ti–Nb alloys,” J. Alloys Compd. 577, S448–S452 (2013).CrossRef Y. Mantani and K. Kudou, “Effect of plastic deformation on material properties and martensite structures in Ti–Nb alloys,” J. Alloys Compd. 577, S448–S452 (2013).CrossRef
17.
go back to reference H. Zhan, G. Wang, D. Kent, and M. Dargusch, “The dynamic response of a metastable β Ti–Nb alloy to high strain rates at room and elevated temperatures,” Acta Mater. 105, 104–113 (2016).CrossRef H. Zhan, G. Wang, D. Kent, and M. Dargusch, “The dynamic response of a metastable β Ti–Nb alloy to high strain rates at room and elevated temperatures,” Acta Mater. 105, 104–113 (2016).CrossRef
18.
go back to reference A. A. Ilyin, M. Y. Kollerov, and I. S. Golovin, “Hydrogen influence on plastic deformation mechanism of β‑titanium alloys of Ti–Nb system,” J. Alloys Compd. 253, 144–147 (1997).CrossRef A. A. Ilyin, M. Y. Kollerov, and I. S. Golovin, “Hydrogen influence on plastic deformation mechanism of β‑titanium alloys of Ti–Nb system,” J. Alloys Compd. 253, 144–147 (1997).CrossRef
19.
go back to reference M. A. Li-qiang, L. Zhen-yu, J. Si-hai, Y. Xiang-qian, and W. Di, “Effect of niobium and titanium on dynamic recrystallization behavior of low carbon steels,” J. Iron Steel Res. Int. 15, 31–36 (2008).CrossRef M. A. Li-qiang, L. Zhen-yu, J. Si-hai, Y. Xiang-qian, and W. Di, “Effect of niobium and titanium on dynamic recrystallization behavior of low carbon steels,” J. Iron Steel Res. Int. 15, 31–36 (2008).CrossRef
20.
go back to reference R. Bobbili and V. Madhu, “Dynamic recrystallization behavior of a biomedical Ti–13Nb–13Zr alloy,” J. Mech. Behav. Biomed. Mater. 59, 146–155 (2016).CrossRef R. Bobbili and V. Madhu, “Dynamic recrystallization behavior of a biomedical Ti–13Nb–13Zr alloy,” J. Mech. Behav. Biomed. Mater. 59, 146–155 (2016).CrossRef
21.
go back to reference S. V. Mehtonen, E. J. Palmiere, R. D. K. Misra, L. P. Karjalainen, and D. A. Porter, “Dynamic restoration mechanisms in a Ti–Nb stabilized ferritic stainless steel during hot deformation,” Mater. Sci. Eng., A 601, 7–19 (2014). S. V. Mehtonen, E. J. Palmiere, R. D. K. Misra, L. P. Karjalainen, and D. A. Porter, “Dynamic restoration mechanisms in a Ti–Nb stabilized ferritic stainless steel during hot deformation,” Mater. Sci. Eng., A 601, 7–19 (2014).
22.
go back to reference J. Luo, P. Ye, M. Q. Li, and L. Y. Liu, “Effect of the alpha grain size on the deformation behavior during isothermal compression of Ti–6Al–4V alloy,” Mater. Des. 88, 32–40 (2015).CrossRef J. Luo, P. Ye, M. Q. Li, and L. Y. Liu, “Effect of the alpha grain size on the deformation behavior during isothermal compression of Ti–6Al–4V alloy,” Mater. Des. 88, 32–40 (2015).CrossRef
23.
go back to reference B. Chen, H. Xiong, B. Sun, S. Tang, B. Du, and N. Li, “Microstructures and mechanical properties of Ti–3Al/Ni-based superalloy joints arc welded with Ti–Nb and Ti–Ni–Nb filler alloys,” Prog. Nat. Sci. 24, 313–320 (2014).CrossRef B. Chen, H. Xiong, B. Sun, S. Tang, B. Du, and N. Li, “Microstructures and mechanical properties of Ti–3Al/Ni-based superalloy joints arc welded with Ti–Nb and Ti–Ni–Nb filler alloys,” Prog. Nat. Sci. 24, 313–320 (2014).CrossRef
Metadata
Title
Constitutive Equation for the Hot Deformation Behavior of TiNiNb Shape Memory Alloy
Authors
Liu Junwei
Lu Shiqiang
Yao Qi
Zhao Zhigang
Publication date
01-04-2019
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2019
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19040082

Other articles of this Issue 4/2019

Physics of Metals and Metallography 4/2019 Go to the issue