Skip to main content
Top
Published in: Physics of Metals and Metallography 4/2019

01-04-2019 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Kinetics of Overlapping Precipitation and Particle Size Distribution of Ni3Al Phase

Authors: X. R. Zhou, Y. S. Li, Z. L. Yan, C. W. Liu, L. H. Zhu

Published in: Physics of Metals and Metallography | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The precipitation kinetics of overlapping process from nucleation and growth to coarsening of the γ′(Ni3Al) phase in Ni–Al alloys are investigated quantitatively by using the interface diffusion-controlled phase field model. It is found that the time exponent of average particles radius of the γ′ phase is about 1/3 at the growth and coarsening stage, while the exponent is smaller than 1/3 at the later steady-state coarsening stage. The decrease rate of the number density of the γ′ phase is larger at the steady-state coarsening than that of the growth and coarsening stage. The particle size distribution (PSD) is widened at the nucleation and growth stage, then is narrowed at the growth and coarsening stage, and becomes wide again at the steady-state coarsening stage; the width of PSDs obtained by the quantitative calculation is greater than 0.215 proposed by the LSW theory. Moreover, the position of the PSDs peak moves from 1.0 of the normalized radius at the nucleation and growth stage to less than 1.0 of the growth and coarsening stage, and then moves back to 1.0 at steady-state coarsening stage. The non-monotonically variation of kinetics of the γ′ phase during the precipitation process are reasonable and theoretically significant for the kinetics evolution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Rai, H. Trpathy, R. N. Hajra, S. Raju, and S. Saroja1, “Thermophysical properties of Ni based super alloy 617,” J. Alloys Compd. 698, 442–450 (2017).CrossRef K. Rai, H. Trpathy, R. N. Hajra, S. Raju, and S. Saroja1, “Thermophysical properties of Ni based super alloy 617,” J. Alloys Compd. 698, 442–450 (2017).CrossRef
2.
go back to reference Y. X. Pang, Y. S. Li, X. C. Wu, W. Liu, and Z. Y. Hou, “Phase-field simulation of diffusion-controlled coarsening kinetics of γ′ phase in Ni–Al alloy,” Int. J. Mater. Res. 106, 108–113 (2015).CrossRef Y. X. Pang, Y. S. Li, X. C. Wu, W. Liu, and Z. Y. Hou, “Phase-field simulation of diffusion-controlled coarsening kinetics of γ′ phase in Ni–Al alloy,” Int. J. Mater. Res. 106, 108–113 (2015).CrossRef
3.
go back to reference Y. Tsukada, Y. Murata, T. Koyama, N. Miura, and Y. Kondo, “Creep deformation and rafting in nickel-based superalloys simulated by the phase-field method using classical flow and creep theories,” Acta Mater. 59, 6378–6386 (2011).CrossRef Y. Tsukada, Y. Murata, T. Koyama, N. Miura, and Y. Kondo, “Creep deformation and rafting in nickel-based superalloys simulated by the phase-field method using classical flow and creep theories,” Acta Mater. 59, 6378–6386 (2011).CrossRef
4.
go back to reference G. Rubin, and A. G. Khachaturyan, “Three-dimensional model of precipitation of ordered intermetallics,” Acta Mater. 47, 1995–2002 (1999).CrossRef G. Rubin, and A. G. Khachaturyan, “Three-dimensional model of precipitation of ordered intermetallics,” Acta Mater. 47, 1995–2002 (1999).CrossRef
5.
go back to reference J. C. Wang, M. Osawa, T. Yokokawa, H. Harada, and M. Enomoto, “Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM,” Comput. Mater. Sci. 39, 871–879 (2007).CrossRef J. C. Wang, M. Osawa, T. Yokokawa, H. Harada, and M. Enomoto, “Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM,” Comput. Mater. Sci. 39, 871–879 (2007).CrossRef
6.
go back to reference Y. L. Lu, L. C. Zhang, Y. P. Chen, Z. Chen, and Y. X. Wang, “Phase-field study for the pre-precipitation process of L12−Ni3Al phase in Ni−Al−V alloy,” Intermetallics 38, 144–149 (2013).CrossRef Y. L. Lu, L. C. Zhang, Y. P. Chen, Z. Chen, and Y. X. Wang, “Phase-field study for the pre-precipitation process of L12−Ni3Al phase in Ni−Al−V alloy,” Intermetallics 38, 144–149 (2013).CrossRef
7.
go back to reference V. Vaithyanathan, and L. Q. Chen, “Coarsening of ordered intermetallic precipitates with coherency stress,” Acta Mater. 50, 4061–4073 (2002).CrossRef V. Vaithyanathan, and L. Q. Chen, “Coarsening of ordered intermetallic precipitates with coherency stress,” Acta Mater. 50, 4061–4073 (2002).CrossRef
8.
go back to reference T. M. Pollock, and A. S. Argon, “Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates,” Acta Metall. Mater. 42, 1859–1874 (1994).CrossRef T. M. Pollock, and A. S. Argon, “Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates,” Acta Metall. Mater. 42, 1859–1874 (1994).CrossRef
9.
go back to reference C. B. Morrison, J. Weninger, C. K. Sudbrack, Z. G. Mao, R. D. Noebe, and D. N. Seidman, “Effects of solute concentrations on kinetic pathways in Ni–Al–Cr alloys,” Acta Mater. 56, 3422–3438 (2008).CrossRef C. B. Morrison, J. Weninger, C. K. Sudbrack, Z. G. Mao, R. D. Noebe, and D. N. Seidman, “Effects of solute concentrations on kinetic pathways in Ni–Al–Cr alloys,” Acta Mater. 56, 3422–3438 (2008).CrossRef
10.
go back to reference J. Kundin, L. Mushongera, T. Goehler, and H. Emmerich, “Phase-field modeling of the γ′-coarsening behavior in Ni-based superalloys,” Acta Mater. 60, 3758–3772 (2012).CrossRef J. Kundin, L. Mushongera, T. Goehler, and H. Emmerich, “Phase-field modeling of the γ′-coarsening behavior in Ni-based superalloys,” Acta Mater. 60, 3758–3772 (2012).CrossRef
11.
go back to reference Y. Tsukada, T. Koyama, Y. Murata, N. Miura, and Y. Kondo, “Estimation of γ/γ′ diffusion mobility and three-dimensional phase-field simulation of rafting in a commercial nickel-based superalloy,” Comput. Mater. Sci. 83, 371–374 (2014).CrossRef Y. Tsukada, T. Koyama, Y. Murata, N. Miura, and Y. Kondo, “Estimation of γ/γ′ diffusion mobility and three-dimensional phase-field simulation of rafting in a commercial nickel-based superalloy,” Comput. Mater. Sci. 83, 371–374 (2014).CrossRef
12.
go back to reference I. M. Lifshitz, and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids 19, 35–50 (1961).CrossRef I. M. Lifshitz, and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids 19, 35–50 (1961).CrossRef
13.
go back to reference C. Wagner, “Theorie der alterung von niederschlagen durch umlosen (Ostwald-reifung),” Z. Elektrochem. 65, 581–591 (1961). C. Wagner, “Theorie der alterung von niederschlagen durch umlosen (Ostwald-reifung),” Z. Elektrochem. 65, 581–591 (1961).
14.
go back to reference A. J. Ardell, “Isotropic fiber coarsening in unidirectionally solidified eutectic alloys,” Metall. Trans. 3, 1395–1401 (1972).CrossRef A. J. Ardell, “Isotropic fiber coarsening in unidirectionally solidified eutectic alloys,” Metall. Trans. 3, 1395–1401 (1972).CrossRef
15.
go back to reference A. J. Ardell, “The effect of volume fraction on particle coarsening: Theoretical considerations,” Acta Metall. 20, 61–71 (1972).CrossRef A. J. Ardell, “The effect of volume fraction on particle coarsening: Theoretical considerations,” Acta Metall. 20, 61–71 (1972).CrossRef
16.
go back to reference C. P. Schmuck, F. Soisson, and D. Blavette, “Ordering and phase separation in low supersaturated Ni–Cr–Al alloys: 3D atom probe and Monte Carlo simulation,” Mater. Sci. Eng., A 250, 99–103 (1998).CrossRef C. P. Schmuck, F. Soisson, and D. Blavette, “Ordering and phase separation in low supersaturated Ni–Cr–Al alloys: 3D atom probe and Monte Carlo simulation,” Mater. Sci. Eng., A 250, 99–103 (1998).CrossRef
17.
go back to reference C. K. Sudbrack, K. E. Yoon, R. D. Noebe, and D. N. Seidman, “Temporal evolution of the nanostructure and phase compositions in a model Ni–Al–Cr alloy,” Acta Mater. 54, 3199–3210 (2006).CrossRef C. K. Sudbrack, K. E. Yoon, R. D. Noebe, and D. N. Seidman, “Temporal evolution of the nanostructure and phase compositions in a model Ni–Al–Cr alloy,” Acta Mater. 54, 3199–3210 (2006).CrossRef
18.
go back to reference C. Booth-Morrison, Y. Zhou, R. D. Noebe, and D. N. Seidman, “On the nanometer scale phase separation of a low-supersaturation Ni–Al–Cr alloy,” Philos. Mag. 90, 7–28 (2010).CrossRef C. Booth-Morrison, Y. Zhou, R. D. Noebe, and D. N. Seidman, “On the nanometer scale phase separation of a low-supersaturation Ni–Al–Cr alloy,” Philos. Mag. 90, 7–28 (2010).CrossRef
19.
go back to reference A. J. Ardell, “Non-integer temporal exponents in trans-interface diffusion-controlled coarsening,” J. Mater. Sci. 51, 6133–6148 (2016).CrossRef A. J. Ardell, “Non-integer temporal exponents in trans-interface diffusion-controlled coarsening,” J. Mater. Sci. 51, 6133–6148 (2016).CrossRef
20.
go back to reference G. Sheng, T. Wang, Q. Du and L. Q. Chen, “Coarsening kinetics of a two phase mixture with highly disparate diffusion mobility,” Commun. Comput. Phys. 8, 249–264 (2010). G. Sheng, T. Wang, Q. Du and L. Q. Chen, “Coarsening kinetics of a two phase mixture with highly disparate diffusion mobility,” Commun. Comput. Phys. 8, 249–264 (2010).
21.
go back to reference M. Chandran, “Multiscale ab initio simulation of Ni‑based alloys: Real-space distribution of atoms in γ + γ' phase,” Comput. Mater. Sci. 108, 192–204 (2015).CrossRef M. Chandran, “Multiscale ab initio simulation of Ni‑based alloys: Real-space distribution of atoms in γ + γ' phase,” Comput. Mater. Sci. 108, 192–204 (2015).CrossRef
22.
go back to reference T. Kitashima, and H. Harada, “A new phase-field method for simulating γ′ precipitation in multicomponent nickel-base superalloys,” Acta Mater. 57, 2020–2028 (2009).CrossRef T. Kitashima, and H. Harada, “A new phase-field method for simulating γ′ precipitation in multicomponent nickel-base superalloys,” Acta Mater. 57, 2020–2028 (2009).CrossRef
23.
go back to reference H. K. Lin, C. C. Chen, and C. W. Lan, “A simple anisotropic surface free energy function for three-dimensional phase field modeling of multi-crystalline crystal growth,” J. Cryst. Growth 362, 62–65 (2013).CrossRef H. K. Lin, C. C. Chen, and C. W. Lan, “A simple anisotropic surface free energy function for three-dimensional phase field modeling of multi-crystalline crystal growth,” J. Cryst. Growth 362, 62–65 (2013).CrossRef
24.
go back to reference Y. Y. Qiu, “Coarsening kinetics of γ′ precipitates in Ni‒Al and Ni–Al–Mo alloys,” J. Mater. Sci. 31, 4311–4319 (1996).CrossRef Y. Y. Qiu, “Coarsening kinetics of γ′ precipitates in Ni‒Al and Ni–Al–Mo alloys,” J. Mater. Sci. 31, 4311–4319 (1996).CrossRef
25.
go back to reference P. Streitenberger, “Analytical description of phase coarsening at high volume fractions,” Acta Mater. 61, 5026–5035 (2013).CrossRef P. Streitenberger, “Analytical description of phase coarsening at high volume fractions,” Acta Mater. 61, 5026–5035 (2013).CrossRef
26.
go back to reference A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD 15, 317–425 (1991).CrossRef A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD 15, 317–425 (1991).CrossRef
27.
go back to reference I. Absara, N. Dupin, H. L. Lukas, and B. Sumdman, “Thermodynamic assessment of the Al–Ni system,” J. Alloys Compd. 247, 20–30 (1997).CrossRef I. Absara, N. Dupin, H. L. Lukas, and B. Sumdman, “Thermodynamic assessment of the Al–Ni system,” J. Alloys Compd. 247, 20–30 (1997).CrossRef
28.
go back to reference J. Z. Zhu, Z. K. Liu, V. Vaithyanathan, and L. Q. Chen, “Linking phase-field model to CALPHAD: Application to precipitate shape evolution in Ni-base alloys,” Scr. Mater. 46, 401–406 (2002).CrossRef J. Z. Zhu, Z. K. Liu, V. Vaithyanathan, and L. Q. Chen, “Linking phase-field model to CALPHAD: Application to precipitate shape evolution in Ni-base alloys,” Scr. Mater. 46, 401–406 (2002).CrossRef
29.
go back to reference J. Z. Zhu, T. Wang, A. J. Ardell, S. H. Zhou, Z. K. Liu, and L. Q. Chen, “Three-dimensional phase-field simulations of coarsening kinetics of γ′ particles in binary Ni–Al alloys,” Acta Mater. 52, 2837–2845 (2004).CrossRef J. Z. Zhu, T. Wang, A. J. Ardell, S. H. Zhou, Z. K. Liu, and L. Q. Chen, “Three-dimensional phase-field simulations of coarsening kinetics of γ′ particles in binary Ni–Al alloys,” Acta Mater. 52, 2837–2845 (2004).CrossRef
30.
go back to reference A. G. Khachaturyan, Theory of Structural Transformations in Solids (Nauka, Moscow, 1974; Wiley & Sons, New York, 1983). A. G. Khachaturyan, Theory of Structural Transformations in Solids (Nauka, Moscow, 1974; Wiley & Sons, New York, 1983).
31.
go back to reference S. Y. Hu, and L. Q. Chen, “A phase-field model for evolving microstructures with strong elastic inhomogeneity,” Acta Mater. 49, 1879–1890 (2001).CrossRef S. Y. Hu, and L. Q. Chen, “A phase-field model for evolving microstructures with strong elastic inhomogeneity,” Acta Mater. 49, 1879–1890 (2001).CrossRef
32.
go back to reference Y. S. Li, H. Zhu, L. Zhang, and X. L. Cheng, “Phase decomposition and morphology characteristic in thermal aging Fe–Cr alloys under applied strain: A phase-field simulation,” J. Nucl. Mater. 429, 13–18 (2012).CrossRef Y. S. Li, H. Zhu, L. Zhang, and X. L. Cheng, “Phase decomposition and morphology characteristic in thermal aging Fe–Cr alloys under applied strain: A phase-field simulation,” J. Nucl. Mater. 429, 13–18 (2012).CrossRef
33.
go back to reference R. Kubo, “The fluctuation-dissipation theorem,” Rep. Prog. Phys. 29, 255–284 (2002).CrossRef R. Kubo, “The fluctuation-dissipation theorem,” Rep. Prog. Phys. 29, 255–284 (2002).CrossRef
34.
go back to reference L. Q. Chen, and J. Shen, “Application of semi-implicit fourier-spectral method to phase field equations,” Comput. Phys. Commun. 108, 147–158 (1998).CrossRef L. Q. Chen, and J. Shen, “Application of semi-implicit fourier-spectral method to phase field equations,” Comput. Phys. Commun. 108, 147–158 (1998).CrossRef
35.
go back to reference J. Z. Zhu, and L. Q. Chen, “Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: Application of a semi-implicit fourier-spectral method,” Phys. Rev. E 60, 3564–3572 (1999).CrossRef J. Z. Zhu, and L. Q. Chen, “Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: Application of a semi-implicit fourier-spectral method,” Phys. Rev. E 60, 3564–3572 (1999).CrossRef
36.
go back to reference R. R. Mohanty, A. Leon, and Y. H. Sohn, “Phase-field simulation of interdiffusion microstructure containing fcc-γ and L12-γ′ phases in Ni–Al diffusion couples,” Comp. Mater. Sci. 43, 301–308 (2008).CrossRef R. R. Mohanty, A. Leon, and Y. H. Sohn, “Phase-field simulation of interdiffusion microstructure containing fcc-γ and L12-γ′ phases in Ni–Al diffusion couples,” Comp. Mater. Sci. 43, 301–308 (2008).CrossRef
37.
go back to reference A. J. Ardell, “The effects of elastic interactions on precipitate microstructural evolution in elastically inhomogeneous nickel-base alloys,” Philos. Mag. 94, 2101–2130 (2014).CrossRef A. J. Ardell, “The effects of elastic interactions on precipitate microstructural evolution in elastically inhomogeneous nickel-base alloys,” Philos. Mag. 94, 2101–2130 (2014).CrossRef
38.
go back to reference J. Boisse, N. Lecoq, R. Patte, and H. Zapolsky, “Phase-field simulation of coarsening of γ precipitates in an ordered γ′ matrix,” Acta Mater. 55, 6151–6158 (2007).CrossRef J. Boisse, N. Lecoq, R. Patte, and H. Zapolsky, “Phase-field simulation of coarsening of γ precipitates in an ordered γ′ matrix,” Acta Mater. 55, 6151–6158 (2007).CrossRef
39.
go back to reference E. Y. Plotnikov, Z. G. Mao, R. D. Noebe, and D. N. Seidman, “Temporal evolution of the γ(fcc)/γ′(L12) interfacial width in binary Ni–Al alloys,” Scr. Mater. 70, 51–54 (2014).CrossRef E. Y. Plotnikov, Z. G. Mao, R. D. Noebe, and D. N. Seidman, “Temporal evolution of the γ(fcc)/γ′(L12) interfacial width in binary Ni–Al alloys,” Scr. Mater. 70, 51–54 (2014).CrossRef
40.
go back to reference Y. H. Wen, B. Wang, J. P. Simmons, and Y. Wang, “A phase-field model for heat treatment applications in Ni-based alloys,” Acta Mater. 54, 2087–2099 (2006).CrossRef Y. H. Wen, B. Wang, J. P. Simmons, and Y. Wang, “A phase-field model for heat treatment applications in Ni-based alloys,” Acta Mater. 54, 2087–2099 (2006).CrossRef
41.
go back to reference K. E. Yoon, R. D. Noebe, and D. N. Seidman, “Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni–Cr–Al superalloy. I: Experimental observations,” Acta Mater. 55, 1145–1157 (2007).CrossRef K. E. Yoon, R. D. Noebe, and D. N. Seidman, “Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni–Cr–Al superalloy. I: Experimental observations,” Acta Mater. 55, 1145–1157 (2007).CrossRef
42.
go back to reference S. G. Kim, “Large-scale three-dimensional simulation of Ostwald ripening,” Acta Mater. 55, 6513–6525 (2007).CrossRef S. G. Kim, “Large-scale three-dimensional simulation of Ostwald ripening,” Acta Mater. 55, 6513–6525 (2007).CrossRef
43.
go back to reference Y. Ma, and A. J. Ardell, “Coarsening of γ (Ni–Al solid solution) precipitates in a γ′ (Ni3Al) matrix: A striking contrast in behavior from normal γ/γ′ alloys,” Scr. Mater. 52, 1335–1340 (2005).CrossRef Y. Ma, and A. J. Ardell, “Coarsening of γ (Ni–Al solid solution) precipitates in a γ′ (Ni3Al) matrix: A striking contrast in behavior from normal γ/γ′ alloys,” Scr. Mater. 52, 1335–1340 (2005).CrossRef
44.
go back to reference Y. Ma, Coarsening Kinetics and Morphological Evolution of Nickel-x (Solid Solution) Precipitates in Ordered Nickel Alloys (x = Aluminum, Germanium) (University of California-Los Angeles, Los Angeles, 2005). Y. Ma, Coarsening Kinetics and Morphological Evolution of Nickel-x (Solid Solution) Precipitates in Ordered Nickel Alloys (x = Aluminum, Germanium) (University of California-Los Angeles, Los Angeles, 2005).
Metadata
Title
Kinetics of Overlapping Precipitation and Particle Size Distribution of Ni3Al Phase
Authors
X. R. Zhou
Y. S. Li
Z. L. Yan
C. W. Liu
L. H. Zhu
Publication date
01-04-2019
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2019
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19040045

Other articles of this Issue 4/2019

Physics of Metals and Metallography 4/2019 Go to the issue