Skip to main content
Top
Published in: Journal of Materials Science 10/2018

31-01-2018 | Ceramics

Magnetization reversal and tunable exchange bias behavior in Mn-substituted NiCr2O4

Authors: Junmoni Barman, S. Ravi

Published in: Journal of Materials Science | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Single phase samples of Ni(Cr1−xMn x )2O4 (x = 0–0.50) were synthesized by using sol–gel route. Investigation of structural, magnetic, exchange bias and magnetization reversal properties was carried out in the bulk samples of Ni(Cr1−xMn x )2O4. Rietveld refinement of the X-ray diffraction patterns recorded at room temperature reveals the tetragonal structure for x = 0 sample with I41/amd space group and cubic structure for x ≥ 0.05 samples with \( {\text{Fd}\bar{3}\text{m}} \) space group. Magnetization measurements show that all samples exhibit ferrimagnetic behavior, and the transition temperature (TC) is found to increase from 73 K for x = 0 to 138 K for x = 0.50. Mn substitution induces magnetization reversal behavior especially for 30 at% of Mn in NiCr2O4 system with a magnetic compensation temperature of 45 K. This magnetization reversal is explained in terms of different site occupation of Mn ions and the different temperature dependence of the magnetic moments of different sublattices. Study of exchange bias behavior in x = 0.10 and 0.30 samples reveals that they exhibit negative and tunable positive and negative exchange bias behavior, respectively. The magnitudes of maximum exchange bias field of these samples are found to be 640 and 5306 Oe, respectively. Exchange bias in x = 0.10 sample originates from the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. The tunable exchange bias behavior in x = 0.30 sample is explained in terms of change in domination of one sublattice moment over the other as the temperature is varied.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Ueno G, Sato S, Kino Y (1999) The low-temperature tetragonal phase of NiCr2O4. Acta Cryst Sect C 55:1963–1966CrossRef Ueno G, Sato S, Kino Y (1999) The low-temperature tetragonal phase of NiCr2O4. Acta Cryst Sect C 55:1963–1966CrossRef
3.
go back to reference Maignan A, Martin C, Singh K, Simon C, Lebedev OI, Turner S (2012) From spin induced ferroelectricity to dipolar glasses: spinel chromites and mixed delafossites. J Solid State Chem 195:41–49CrossRef Maignan A, Martin C, Singh K, Simon C, Lebedev OI, Turner S (2012) From spin induced ferroelectricity to dipolar glasses: spinel chromites and mixed delafossites. J Solid State Chem 195:41–49CrossRef
4.
go back to reference Klemme S, van Miltenburg JC (2002) Thermodynamic properties of nickel chromite (NiCr2O4) based on adiabatic calorimetry at low temperatures. Phys Chem Miner 29:663–667CrossRef Klemme S, van Miltenburg JC (2002) Thermodynamic properties of nickel chromite (NiCr2O4) based on adiabatic calorimetry at low temperatures. Phys Chem Miner 29:663–667CrossRef
5.
go back to reference Ohgushi K, Okimoto Y, Ogasawara T, Miyasaka S, Tokura Y (2008) Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe Co, Cu, Zn, Cd; X=O, S, Se). J Phys Soc Jpn 77:034713CrossRef Ohgushi K, Okimoto Y, Ogasawara T, Miyasaka S, Tokura Y (2008) Magnetic, optical, and magnetooptical properties of spinel-type ACr2X4 (A=Mn, Fe Co, Cu, Zn, Cd; X=O, S, Se). J Phys Soc Jpn 77:034713CrossRef
6.
go back to reference Tomiyasu K, Kagomiya I (2004) Magnetic structure of NiCr2O4 studied by neutron scattering and magnetization measurements. J Phys Soc Jpn 73:2539–2542CrossRef Tomiyasu K, Kagomiya I (2004) Magnetic structure of NiCr2O4 studied by neutron scattering and magnetization measurements. J Phys Soc Jpn 73:2539–2542CrossRef
7.
go back to reference Neel L (1948) Magnetic properties of femtes: ferrimagnetism and antiferromagnetism. Ann Phys 3:137–198CrossRef Neel L (1948) Magnetic properties of femtes: ferrimagnetism and antiferromagnetism. Ann Phys 3:137–198CrossRef
8.
go back to reference Yoshii K (2001) Magnetic properties of perovskite GdCrO3. J Solid State Chem 159:204–208CrossRef Yoshii K (2001) Magnetic properties of perovskite GdCrO3. J Solid State Chem 159:204–208CrossRef
9.
go back to reference Adachi H, Ino H (1999) A ferromagnet having no net magnetic moment. Nature 401:148–150CrossRef Adachi H, Ino H (1999) A ferromagnet having no net magnetic moment. Nature 401:148–150CrossRef
10.
go back to reference Nogues J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232CrossRef Nogues J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232CrossRef
11.
go back to reference Kumar A, Yusuf SM (2015) The phenomenon of negative magnetization and its implications. Phys Rep 556:1–34CrossRef Kumar A, Yusuf SM (2015) The phenomenon of negative magnetization and its implications. Phys Rep 556:1–34CrossRef
12.
go back to reference Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102:1413–1414CrossRef Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102:1413–1414CrossRef
13.
14.
go back to reference Nogues J, Sort J, Langlais V, Skumryev V, Surinach S, Munoz JS, Baro MD (2005) Exchange bias in nanostructures. Phys Rep 422:65–117CrossRef Nogues J, Sort J, Langlais V, Skumryev V, Surinach S, Munoz JS, Baro MD (2005) Exchange bias in nanostructures. Phys Rep 422:65–117CrossRef
15.
go back to reference Giri S, Patra M, Majumdar S (2011) Exchange bias effect in alloys and compounds. J Phys: Condens Matter 23:073201 Giri S, Patra M, Majumdar S (2011) Exchange bias effect in alloys and compounds. J Phys: Condens Matter 23:073201
16.
go back to reference Karmakar S, Taran S, Bose E, Chaudhuri BK, Sun CP, Huang CL, Yang HD (2008) Evidence of intrinsic exchange bias and its origin in spin-glass-like disordered L0.5Sr0.5MnO3 manganites (L = Y, Y0.5Sm0.5, and Y0.5La0.5). Phys Rev B 77:144409CrossRef Karmakar S, Taran S, Bose E, Chaudhuri BK, Sun CP, Huang CL, Yang HD (2008) Evidence of intrinsic exchange bias and its origin in spin-glass-like disordered L0.5Sr0.5MnO3 manganites (L = Y, Y0.5Sm0.5, and Y0.5La0.5). Phys Rev B 77:144409CrossRef
17.
go back to reference Y-k Tang, Sun Y, Z-h Cheng (2006) Exchange bias associated with phase separation in the perovskite cobaltite La1−xSr x CoO3. Phys Rev B 73:174419CrossRef Y-k Tang, Sun Y, Z-h Cheng (2006) Exchange bias associated with phase separation in the perovskite cobaltite La1−xSr x CoO3. Phys Rev B 73:174419CrossRef
18.
go back to reference Yoshii K (2011) Positive exchange bias from magnetization reversal in La1−xPr x CrO3. Appl Phys Lett 99:142501CrossRef Yoshii K (2011) Positive exchange bias from magnetization reversal in La1−xPr x CrO3. Appl Phys Lett 99:142501CrossRef
19.
go back to reference Bora T, Saravanan P, Ravi S (2013) Antiferromagnetism and the effect of exchange bias in LaCr1−xFe x O3 (x = 0.40 to 0.60). J Supercond Nov Magn 26:1645–1648CrossRef Bora T, Saravanan P, Ravi S (2013) Antiferromagnetism and the effect of exchange bias in LaCr1−xFe x O3 (x = 0.40 to 0.60). J Supercond Nov Magn 26:1645–1648CrossRef
20.
go back to reference Kulkarni PD, Thamizhavel A, Rakhecha VC, Nigam AK, Paulose PL, Ramakrishnan S, Grover AK (2009) Magnetic compensation phenomenon and the sign reversal in the exchange bias field in a single crystal of Nd0.75Ho0.25Al 2. EPL 86:47003CrossRef Kulkarni PD, Thamizhavel A, Rakhecha VC, Nigam AK, Paulose PL, Ramakrishnan S, Grover AK (2009) Magnetic compensation phenomenon and the sign reversal in the exchange bias field in a single crystal of Nd0.75Ho0.25Al 2. EPL 86:47003CrossRef
21.
go back to reference Padam R, Ravi S, Ramakrishnan S, Grover AK, Pal D (2014) Exchange bias in non-collinear spin-spiral system. J Magn Magn Mater 371:144–148CrossRef Padam R, Ravi S, Ramakrishnan S, Grover AK, Pal D (2014) Exchange bias in non-collinear spin-spiral system. J Magn Magn Mater 371:144–148CrossRef
22.
go back to reference Barman J, Bora T, Ravi S (2015) Study of exchange bias and training effect in NiCr2O4. J Magn Magn Mater 385:93–98CrossRef Barman J, Bora T, Ravi S (2015) Study of exchange bias and training effect in NiCr2O4. J Magn Magn Mater 385:93–98CrossRef
23.
go back to reference Ptak M, Maczka M, Gagor A, Pikul A, Macalik L, Hanuza J (2013) Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn–Teller distorted NiCr2O4 powders. J Solid State Chem 201:270–279CrossRef Ptak M, Maczka M, Gagor A, Pikul A, Macalik L, Hanuza J (2013) Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn–Teller distorted NiCr2O4 powders. J Solid State Chem 201:270–279CrossRef
24.
go back to reference Singh H, Chakraborty T, Srikanth K, Chandra R, Mitra C, Kumar U (2014) Study of exchange bias in NiCr2O4 nanoparticles. Phys B 448:77–79CrossRef Singh H, Chakraborty T, Srikanth K, Chandra R, Mitra C, Kumar U (2014) Study of exchange bias in NiCr2O4 nanoparticles. Phys B 448:77–79CrossRef
25.
go back to reference Alice M, Jana Poltierova V, Petr H, Jiri P, Daniel N (2011) Magnetic properties of TCr2O4 (T=Co, Ni) fine powders and TCr2O4/SiO2 nanocomposites. IOP Conf Ser Mater Sci Eng 18:032022CrossRef Alice M, Jana Poltierova V, Petr H, Jiri P, Daniel N (2011) Magnetic properties of TCr2O4 (T=Co, Ni) fine powders and TCr2O4/SiO2 nanocomposites. IOP Conf Ser Mater Sci Eng 18:032022CrossRef
27.
go back to reference Zhang HG, Wang Z, Liu EK, Wang WH, Yue M, Wu GH (2015) Site preference and compensation behavior in Co(Cr, Mn)2O4 system. J Appl Phys 117:17B735CrossRef Zhang HG, Wang Z, Liu EK, Wang WH, Yue M, Wu GH (2015) Site preference and compensation behavior in Co(Cr, Mn)2O4 system. J Appl Phys 117:17B735CrossRef
28.
go back to reference Young RA (1996) The Rietveld method International Union of Crystallography. Oxford University, New York Young RA (1996) The Rietveld method International Union of Crystallography. Oxford University, New York
29.
go back to reference Crottaz O, Kubel F, Schmid H (1997) Jumping crystals of the spinels NiCr2O4 and CuCr2O4. J Mater Chem 7:143–146CrossRef Crottaz O, Kubel F, Schmid H (1997) Jumping crystals of the spinels NiCr2O4 and CuCr2O4. J Mater Chem 7:143–146CrossRef
30.
go back to reference Odo EA (2015) Morphology and elemental study of silicon nanoparticles produced using a vibratory disc Mill. Nanosci Nanotechnol 5:57–63 Odo EA (2015) Morphology and elemental study of silicon nanoparticles produced using a vibratory disc Mill. Nanosci Nanotechnol 5:57–63
31.
go back to reference Ishibashi H, Yasumi T (2007) Structural transition of spinel compound at ferrimagnetic transition temperature. J Magn Magn Mater 310:e610–e612CrossRef Ishibashi H, Yasumi T (2007) Structural transition of spinel compound at ferrimagnetic transition temperature. J Magn Magn Mater 310:e610–e612CrossRef
32.
go back to reference Ren Y, Palstra TTM, Khomskii DI, Pellegrin E, Nugroho AA, Menovsky AA, Sawatzky GA (1998) Temperature-induced magnetization reversal in a YVO3 single crystal. Nature 396:441–444CrossRef Ren Y, Palstra TTM, Khomskii DI, Pellegrin E, Nugroho AA, Menovsky AA, Sawatzky GA (1998) Temperature-induced magnetization reversal in a YVO3 single crystal. Nature 396:441–444CrossRef
33.
go back to reference Mao J, Sui Y, Zhang X, Su Y, Wang X, Liu Z, Wang Y, Zhu R, Wang Y, Liu W, Tang J (2011) Temperature- and magnetic-field-induced magnetization reversal in perovskite YFe0.5Cr0.5O3. Appl Phys Lett 98:192510CrossRef Mao J, Sui Y, Zhang X, Su Y, Wang X, Liu Z, Wang Y, Zhu R, Wang Y, Liu W, Tang J (2011) Temperature- and magnetic-field-induced magnetization reversal in perovskite YFe0.5Cr0.5O3. Appl Phys Lett 98:192510CrossRef
34.
go back to reference Mandal P, Sundaresan A, Rao CNR, Iyo A, Shirage PM, Tanaka Y, Simon C, Pralong V, Lebedev OI, Caignaert V, Raveau B (2010) Temperature-induced magnetization reversal in BiFe0.5Mn0.5O3 synthesized at high pressure. Phys Rev B 82:100416CrossRef Mandal P, Sundaresan A, Rao CNR, Iyo A, Shirage PM, Tanaka Y, Simon C, Pralong V, Lebedev OI, Caignaert V, Raveau B (2010) Temperature-induced magnetization reversal in BiFe0.5Mn0.5O3 synthesized at high pressure. Phys Rev B 82:100416CrossRef
35.
go back to reference Huang XH, Ding JF, Zhang GQ, Hou Y, Yao YP, Li XG (2008) Size-dependent exchange bias in La0.25Ca0.75MnO3 nanoparticles. Phys Rev B 78:224408CrossRef Huang XH, Ding JF, Zhang GQ, Hou Y, Yao YP, Li XG (2008) Size-dependent exchange bias in La0.25Ca0.75MnO3 nanoparticles. Phys Rev B 78:224408CrossRef
36.
go back to reference Yan LQ, Ren W, Shen J, Sun ZH, Wang FW (2009) The exchange biaslike effect in tetrahedral spinels Cu1−xZnxCr2O4 (x = 0.1,0.3). J Appl Phys 105:07A719CrossRef Yan LQ, Ren W, Shen J, Sun ZH, Wang FW (2009) The exchange biaslike effect in tetrahedral spinels Cu1−xZnxCr2O4 (x = 0.1,0.3). J Appl Phys 105:07A719CrossRef
37.
go back to reference Venkatesh S, Ulhas V, Veer Chand R, Ramakrishnan S, Grover AK (2010) Magnetic response in the vicinity of magnetic compensation: a case study in spin ferromagnetic Sm1−xGdxAl2 intermetallic alloys. J Phys: Condens Matter 22:496002 Venkatesh S, Ulhas V, Veer Chand R, Ramakrishnan S, Grover AK (2010) Magnetic response in the vicinity of magnetic compensation: a case study in spin ferromagnetic Sm1−xGdxAl2 intermetallic alloys. J Phys: Condens Matter 22:496002
38.
go back to reference Padam R, Pandya S, Ravi S, Nigam AK, Ramakrishnan S, Grover AK, Pal D (2013) Magnetic compensation effect and phase reversal of exchange bias field across compensation temperature in multiferroic Co(Cr0.95Fe0.05)2O4. Appl Phys Lett 102:112412CrossRef Padam R, Pandya S, Ravi S, Nigam AK, Ramakrishnan S, Grover AK, Pal D (2013) Magnetic compensation effect and phase reversal of exchange bias field across compensation temperature in multiferroic Co(Cr0.95Fe0.05)2O4. Appl Phys Lett 102:112412CrossRef
39.
go back to reference Bora T, Ravi S (2013) Sign reversal of magnetization and exchange bias field in LaCr0.85Mn0.15O3. J Appl Phys 114:183902CrossRef Bora T, Ravi S (2013) Sign reversal of magnetization and exchange bias field in LaCr0.85Mn0.15O3. J Appl Phys 114:183902CrossRef
40.
go back to reference Mao J, Sui Y, Zhang X, Wang X, Su Y, Liu Z, Wang Y, Zhu R, Wang Y, Liu W, Liu X (2011) Tunable exchange bias effects in perovskite. Solid State Commun 151:1982–1985CrossRef Mao J, Sui Y, Zhang X, Wang X, Su Y, Liu Z, Wang Y, Zhu R, Wang Y, Liu W, Liu X (2011) Tunable exchange bias effects in perovskite. Solid State Commun 151:1982–1985CrossRef
Metadata
Title
Magnetization reversal and tunable exchange bias behavior in Mn-substituted NiCr2O4
Authors
Junmoni Barman
S. Ravi
Publication date
31-01-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2073-2

Other articles of this Issue 10/2018

Journal of Materials Science 10/2018 Go to the issue

Premium Partners