Skip to main content
Top
Published in: Journal of Materials Science 1/2018

31-08-2017 | Electronic materials

Magnetoresistance of graphite intercalated with cobalt

Authors: Iryna Ovsiienko, Lyudmila Matzui, Igor Berkutov, Il’gar Mirzoiev, Tetyana Len, Yuriy Prylutskyy, Oleksandr Prokopov, Uwe Ritter

Published in: Journal of Materials Science | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The results of experimental studies of magnetoresistance, resistivity and Hall coefficient of graphite intercalated with cobalt are presented. A highly oriented pyrolitic graphite was chosen as source for intercalation. A two-step method of synthesis was used for graphite intercalation compound (GIC) obtaining. The electro- and magnetoresistance and Hall coefficient were measured in temperature range of (1.6–293) K and magnetic field up to 5 T. The effects of asymmetric and linear relatively to magnetic field magnetoresistance have been revealed for GIC. It was shown that the linear magnetoresistance is not saturated with increasing magnetic field up to 5 T and is not dependent on temperature. The effect of linear magnetoresistance in GIC was explained within Abrikosov model of quantum magnetoresistance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xu R, Husmann A, Rosenbaum TF, Saboungi ML, Enderby JE, Littlewood PB (1997) Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390:57–60CrossRef Xu R, Husmann A, Rosenbaum TF, Saboungi ML, Enderby JE, Littlewood PB (1997) Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390:57–60CrossRef
2.
go back to reference Lee M, Rosenbaum T, Saboungi M, Schnyders H (2002) Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys Rev Lett 88:066602–066604CrossRef Lee M, Rosenbaum T, Saboungi M, Schnyders H (2002) Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys Rev Lett 88:066602–066604CrossRef
3.
go back to reference Kreutzbruck M, Lembke G, Mogwitz B, Korte C, Janek J (2009) Linear magnetoresistance in Ag2 + δSe thin films. Phys Rev B 79:035204–035205CrossRef Kreutzbruck M, Lembke G, Mogwitz B, Korte C, Janek J (2009) Linear magnetoresistance in Ag2 + δSe thin films. Phys Rev B 79:035204–035205CrossRef
4.
go back to reference Branforda WR, Husmann A, Solin SA, Clowes SK, Zhang T, Bugoslavsky YV, Cohen LF (2005) Geometric manipulation of the high-field linear magnetoresistance in InSb epilayers on GaAs (001). Appl Phys Lett 86:202116-1–202116-3. doi:10.1063/1.1923755 Branforda WR, Husmann A, Solin SA, Clowes SK, Zhang T, Bugoslavsky YV, Cohen LF (2005) Geometric manipulation of the high-field linear magnetoresistance in InSb epilayers on GaAs (001). Appl Phys Lett 86:202116-1–202116-3. doi:10.​1063/​1.​1923755
5.
go back to reference Johnson H, Bennett S, Barua R, Lewis L, Heiman D (2010) Universal properties of linear magnetoresis-tance in strongly disordered MnAs-GaAs composite semi-conductors. Phys Rev B 82(6):085202–085204CrossRef Johnson H, Bennett S, Barua R, Lewis L, Heiman D (2010) Universal properties of linear magnetoresis-tance in strongly disordered MnAs-GaAs composite semi-conductors. Phys Rev B 82(6):085202–085204CrossRef
6.
go back to reference Bhoi D, Mandal P, Choudhury P, Pandya S, Ganesan V (2011) Quantum magnetoresistance of the PrFeAsO oxypnictide. Appl Phys Lett 98(17):172105-1–172105-3CrossRef Bhoi D, Mandal P, Choudhury P, Pandya S, Ganesan V (2011) Quantum magnetoresistance of the PrFeAsO oxypnictide. Appl Phys Lett 98(17):172105-1–172105-3CrossRef
7.
go back to reference Wang XL, Du Y, Dou SX, Zhang C (2012) Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys Rev Lett 108(26):266806-1–266806-5 Wang XL, Du Y, Dou SX, Zhang C (2012) Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys Rev Lett 108(26):266806-1–266806-5
8.
go back to reference Yan Y, Wang X, Yu DP, Liao ZM (2013) Large magnetoresistance in high mobility topological insulator Bi2Se3. Appl Phys Lett 103(2):033106-1–033106-4CrossRef Yan Y, Wang X, Yu DP, Liao ZM (2013) Large magnetoresistance in high mobility topological insulator Bi2Se3. Appl Phys Lett 103(2):033106-1–033106-4CrossRef
9.
go back to reference Singh S, Gopal RK, Sarkar J, Mitra C (2015) Quantum and classical contributions to linear magnetoresistance in topological insulator thin films. In International Conference on Condensed Matter and Applied Physics (ICC 2015) AIP Conf. Proc. 1728 pp. 020557-1–020557-4 Singh S, Gopal RK, Sarkar J, Mitra C (2015) Quantum and classical contributions to linear magnetoresistance in topological insulator thin films. In International Conference on Condensed Matter and Applied Physics (ICC 2015) AIP Conf. Proc. 1728 pp. 020557-1–020557-4
10.
go back to reference Hu J, Parish MM, Rosenbaum TF (2007) Nonsaturating magnetoresistance of inhomogeneous conductors: comparison of experiment and simulation. Phys Rev B 75(21):214203-1–214203-9CrossRef Hu J, Parish MM, Rosenbaum TF (2007) Nonsaturating magnetoresistance of inhomogeneous conductors: comparison of experiment and simulation. Phys Rev B 75(21):214203-1–214203-9CrossRef
11.
12.
go back to reference Friedman AL, Tedesco JL, Campbell PM, Culbertson JC, Aifer E, Perkins FK, Myers-Ward RL, Hite JK et al (2010) Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett 10:3962–3965CrossRef Friedman AL, Tedesco JL, Campbell PM, Culbertson JC, Aifer E, Perkins FK, Myers-Ward RL, Hite JK et al (2010) Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett 10:3962–3965CrossRef
13.
go back to reference Singh RS, Wang X, Chen W, Wee ATS (2012) Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: evidence for two-dimensional magnetotransport. Appl Phys Lett 101(18):183105-1–183105-5 Singh RS, Wang X, Chen W, Wee ATS (2012) Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: evidence for two-dimensional magnetotransport. Appl Phys Lett 101(18):183105-1–183105-5
14.
go back to reference Gryglas-Borysiewicz M, Jouault B, Tworzydło J, Lewinska S, Strupinski W, Baranowski JM (2009) Transport properties of disordered graphene layers. Acta Phys Polonica A 116(5):838–840CrossRef Gryglas-Borysiewicz M, Jouault B, Tworzydło J, Lewinska S, Strupinski W, Baranowski JM (2009) Transport properties of disordered graphene layers. Acta Phys Polonica A 116(5):838–840CrossRef
15.
go back to reference Kisslinger F, Ott C, Heide C, Kampert E, Butz B, Spiecker E, Shallcross S, Weber HB (2015) Linear magnetoresistance in mosaic-like bilayer graphene. Nat Phys Lett 11:650–653CrossRef Kisslinger F, Ott C, Heide C, Kampert E, Butz B, Spiecker E, Shallcross S, Weber HB (2015) Linear magnetoresistance in mosaic-like bilayer graphene. Nat Phys Lett 11:650–653CrossRef
16.
go back to reference Zhang X, Xue QZ, Zhu DD (2004) Positive and negative linear magnetoresistance of graphite. Phys Lett A 320:471–477CrossRef Zhang X, Xue QZ, Zhu DD (2004) Positive and negative linear magnetoresistance of graphite. Phys Lett A 320:471–477CrossRef
17.
go back to reference Chacon-Torres JC, Wirtz L, Pichler T (2014) Raman spectroscopy of graphite intercalation compounds: charge transfer, strain, and electron-phonon coupling in graphene layers. Phys St Sol B 251(11):2337–2355CrossRef Chacon-Torres JC, Wirtz L, Pichler T (2014) Raman spectroscopy of graphite intercalation compounds: charge transfer, strain, and electron-phonon coupling in graphene layers. Phys St Sol B 251(11):2337–2355CrossRef
18.
go back to reference Shuvayev A, Helmer B, Lyubeznova T, Mirmilstein A, Kvacheva L, Novikov Yu, Volpin M (1989) EXAFS study of graphite intercalation compounds with transition metals (Fe, Ni). J Phys 50:1145–1151CrossRef Shuvayev A, Helmer B, Lyubeznova T, Mirmilstein A, Kvacheva L, Novikov Yu, Volpin M (1989) EXAFS study of graphite intercalation compounds with transition metals (Fe, Ni). J Phys 50:1145–1151CrossRef
19.
go back to reference Touzain F, N’Guessan G, Bonnin D, Kaiser P, Chouteau G (1996) Electrochemically reduced cobalt-graphite intercalation compound. Synth Met 79(3):241–251CrossRef Touzain F, N’Guessan G, Bonnin D, Kaiser P, Chouteau G (1996) Electrochemically reduced cobalt-graphite intercalation compound. Synth Met 79(3):241–251CrossRef
20.
go back to reference Korolovych VF, Nedyak SP, Moroz KO, Prylutskyy YuI, Scharff P, Ritter U (2013) Compressibility of water containing single-walled carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct 21(1):24–30CrossRef Korolovych VF, Nedyak SP, Moroz KO, Prylutskyy YuI, Scharff P, Ritter U (2013) Compressibility of water containing single-walled carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct 21(1):24–30CrossRef
21.
go back to reference Korolovych VF, Bulavin LA, Prylutskyy YuI, Khrapatiy SV, Tsierkezos N, Ritter U (2014) Influence of single-walled carbon nanotubes on the thermal expansion of water. Int J Thermophys 35(1):19–31CrossRef Korolovych VF, Bulavin LA, Prylutskyy YuI, Khrapatiy SV, Tsierkezos N, Ritter U (2014) Influence of single-walled carbon nanotubes on the thermal expansion of water. Int J Thermophys 35(1):19–31CrossRef
22.
go back to reference Buchelnikov AS, Voronin DP, Kostjukov VV, Deryabina TA, Khrapatiy SV, Prylutskyy YuI, Ritter U, Evstigneev MP (2014) Complexation of aromatic drugs with single-walled carbon nanotubes. J Nanopart Res 16(7):2472-1–2472-14CrossRef Buchelnikov AS, Voronin DP, Kostjukov VV, Deryabina TA, Khrapatiy SV, Prylutskyy YuI, Ritter U, Evstigneev MP (2014) Complexation of aromatic drugs with single-walled carbon nanotubes. J Nanopart Res 16(7):2472-1–2472-14CrossRef
23.
go back to reference Radchenko NV, Prylutskyy YI, Shapoval LM, Sagach VF, Davydovska TL, Dmitrenko OV, Stepanenko LG, Pobigailo LS, Schütze C, Ritter U (2013) Impact of single-walled carbon nanotubes on the medullary neurons in spontaneously hypertensive rats. Mat-Wiss U Werkstofftech 44(2–3):171–175CrossRef Radchenko NV, Prylutskyy YI, Shapoval LM, Sagach VF, Davydovska TL, Dmitrenko OV, Stepanenko LG, Pobigailo LS, Schütze C, Ritter U (2013) Impact of single-walled carbon nanotubes on the medullary neurons in spontaneously hypertensive rats. Mat-Wiss U Werkstofftech 44(2–3):171–175CrossRef
24.
go back to reference Minchenko OH, Tsymbal DO, Minchenko DO, Prylutska SV, Cherepanov VV, Prylutskyy YI, Tsierkezos NG (2016) Single-walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Mat-Wiss U Werkstofftech 47(2–3):180–188CrossRef Minchenko OH, Tsymbal DO, Minchenko DO, Prylutska SV, Cherepanov VV, Prylutskyy YI, Tsierkezos NG (2016) Single-walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Mat-Wiss U Werkstofftech 47(2–3):180–188CrossRef
25.
go back to reference Shapoval LM, Prylutska SV, Kotsyuruba AV, Dmitrenko OV, Prylutskyy YuI, Sagach VF, Ritter U (2016) Single-walled carbon nanotubes modulate cardiovascular control in rats. Mat-Wiss U Werkstofftech 47(2–3):208–215CrossRef Shapoval LM, Prylutska SV, Kotsyuruba AV, Dmitrenko OV, Prylutskyy YuI, Sagach VF, Ritter U (2016) Single-walled carbon nanotubes modulate cardiovascular control in rats. Mat-Wiss U Werkstofftech 47(2–3):208–215CrossRef
26.
go back to reference Mykhailenko OV, Prylutskyy YuI, Matsuy DV, Strzhemechny YM, Le Normand F, Ritter U, Scharff P (2010) Structure and thermal stability of Co- and Fe-intercalated double graphene layers. J Comput Theor Nanosci 7(6):996–999CrossRef Mykhailenko OV, Prylutskyy YuI, Matsuy DV, Strzhemechny YM, Le Normand F, Ritter U, Scharff P (2010) Structure and thermal stability of Co- and Fe-intercalated double graphene layers. J Comput Theor Nanosci 7(6):996–999CrossRef
27.
go back to reference Radchenko TM, Tatarenko VA, Sagalianov IYu, Prylutskyy YuI, Szroeder P, Biniak S (2016) On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon 101:37–48CrossRef Radchenko TM, Tatarenko VA, Sagalianov IYu, Prylutskyy YuI, Szroeder P, Biniak S (2016) On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon 101:37–48CrossRef
28.
go back to reference Mykhailenko OV, Prylutskyy YuI, Кomarov IV, Strungar AV (2017) Structure and thermal stability of Co- and Fe-intercalated double silicene layers. Nanoscale Res Lett 12:110-1–110-5CrossRef Mykhailenko OV, Prylutskyy YuI, Кomarov IV, Strungar AV (2017) Structure and thermal stability of Co- and Fe-intercalated double silicene layers. Nanoscale Res Lett 12:110-1–110-5CrossRef
29.
go back to reference Matsui D, Prylutskyy Yu, Matzui L, Zakharenko N, Normand F, Derory A (2010) Magnetic properties of cobalt-carbon nanocomposites. Phys St Sol C 7:1264–1268 Matsui D, Prylutskyy Yu, Matzui L, Zakharenko N, Normand F, Derory A (2010) Magnetic properties of cobalt-carbon nanocomposites. Phys St Sol C 7:1264–1268
30.
go back to reference Matzui L, Vovchenko L, Dvorkina I (1995) Transport properties of acceptor graphite intercalated compounds. Ukr J Phys 40(1–2):107–111 Matzui L, Vovchenko L, Dvorkina I (1995) Transport properties of acceptor graphite intercalated compounds. Ukr J Phys 40(1–2):107–111
31.
go back to reference Sugihara K, Matsubara K, Suzuki S, Suzuki M (1998) Theory of the a- and c- axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Soc Jap 67(12):4169–4177CrossRef Sugihara K, Matsubara K, Suzuki S, Suzuki M (1998) Theory of the a- and c- axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Soc Jap 67(12):4169–4177CrossRef
32.
go back to reference Matsubara K, Sugihara K, Suzuki I, Suzuki M (1999) A- and c-axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Cond Matt 11:3149–3160CrossRef Matsubara K, Sugihara K, Suzuki I, Suzuki M (1999) A- and c-axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Cond Matt 11:3149–3160CrossRef
33.
go back to reference Matsui D, Ovsiyenko I, Lazarenko O, Prylutskyy Yu, Matsui V (2011) Abnormal electron transport in graphite intercalation compounds with iron. Mol Cryst Liq Cryst 535(1):64–73CrossRef Matsui D, Ovsiyenko I, Lazarenko O, Prylutskyy Yu, Matsui V (2011) Abnormal electron transport in graphite intercalation compounds with iron. Mol Cryst Liq Cryst 535(1):64–73CrossRef
34.
go back to reference Piraux L, Bayot V, Dresselhaus M (1992) Influence of magnetic fields on the two-dimensional electron transport in weakly desordered fluorine-intercalated graphite fibers. Phys Rev B 45(24):14315–14320CrossRef Piraux L, Bayot V, Dresselhaus M (1992) Influence of magnetic fields on the two-dimensional electron transport in weakly desordered fluorine-intercalated graphite fibers. Phys Rev B 45(24):14315–14320CrossRef
35.
go back to reference Matzui L, Vovchenko L, Dvorkina I (1994) Low-temperature thermopower in disordered graphite intercalated with SbCl5. Low Temp Phys 20(5):463–468 Matzui L, Vovchenko L, Dvorkina I (1994) Low-temperature thermopower in disordered graphite intercalated with SbCl5. Low Temp Phys 20(5):463–468
36.
go back to reference Matsui D, Prylutskyy Yu, Matzuy L, Normand F, Ritter U, Scharff P (2008) Transverse and longitudinal magnetoresistance in graphite intercalated by Co. Physica E 40(7):2630–2634CrossRef Matsui D, Prylutskyy Yu, Matzuy L, Normand F, Ritter U, Scharff P (2008) Transverse and longitudinal magnetoresistance in graphite intercalated by Co. Physica E 40(7):2630–2634CrossRef
37.
go back to reference Grechnev GE, Lyogenkaya AA, Kolesnichenko YA, Prylutskyy YI, Hayn R (2014) Electronic structure and magnetic properties of graphite intercalated with 3d-metals. Low Temp Phys 40(5):580–584CrossRef Grechnev GE, Lyogenkaya AA, Kolesnichenko YA, Prylutskyy YI, Hayn R (2014) Electronic structure and magnetic properties of graphite intercalated with 3d-metals. Low Temp Phys 40(5):580–584CrossRef
38.
go back to reference Tkachuk V, Ovsiyenko I, Matzui L, Len T, Prylutskyy Yu, Brusylovets O, Berkutov I, Mirzoiev I et al (2016) Asymmetric magnetoresistance in the graphite intercalation compounds with cobalt. Mol Cryst Liq Cryst 639(1):137–150CrossRef Tkachuk V, Ovsiyenko I, Matzui L, Len T, Prylutskyy Yu, Brusylovets O, Berkutov I, Mirzoiev I et al (2016) Asymmetric magnetoresistance in the graphite intercalation compounds with cobalt. Mol Cryst Liq Cryst 639(1):137–150CrossRef
39.
go back to reference Segal O, Shaya O, Karpovski M, Gerber A (2009) Asymmetric field dependence of magnetoresistance in magnetic films. Phys Rev B 79(14):144434–144436CrossRef Segal O, Shaya O, Karpovski M, Gerber A (2009) Asymmetric field dependence of magnetoresistance in magnetic films. Phys Rev B 79(14):144434–144436CrossRef
40.
go back to reference Cheng X, Urazhdin S, Tchernyshyov O, Chien C, Nikitenko V, Shapiro A, Shull R (2004) Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy. Phys Rev Lett 94:017203–017204CrossRef Cheng X, Urazhdin S, Tchernyshyov O, Chien C, Nikitenko V, Shapiro A, Shull R (2004) Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy. Phys Rev Lett 94:017203–017204CrossRef
41.
go back to reference Xiang G, Holleitner A, Sheu B, Mendoza F, Maksimov O, Stone M, Schiffer P, Awschalom D, Samarth N (2005) Magnetoresistance anomalies in (Ga, Mn)As epilayers with perpendicular magnetic anisotropy. Phys Rev B 71(24):241307-1–241307-4CrossRef Xiang G, Holleitner A, Sheu B, Mendoza F, Maksimov O, Stone M, Schiffer P, Awschalom D, Samarth N (2005) Magnetoresistance anomalies in (Ga, Mn)As epilayers with perpendicular magnetic anisotropy. Phys Rev B 71(24):241307-1–241307-4CrossRef
42.
go back to reference Wang X-L, Dou SX, Zhang C (2010) Zero-gap materials for future spintronics, electronics and optics. NPG Asia Mater 2(1):31–38CrossRef Wang X-L, Dou SX, Zhang C (2010) Zero-gap materials for future spintronics, electronics and optics. NPG Asia Mater 2(1):31–38CrossRef
43.
go back to reference Abrikosov AA (2000) Quantum linear magnetoresistance. Europhys Lett 49(6):789–793CrossRef Abrikosov AA (2000) Quantum linear magnetoresistance. Europhys Lett 49(6):789–793CrossRef
44.
go back to reference Abrikosov A (1999) Quantum magnetoresistance of layered semimetals. Phys Rev B 60(6):4231–4234CrossRef Abrikosov A (1999) Quantum magnetoresistance of layered semimetals. Phys Rev B 60(6):4231–4234CrossRef
45.
go back to reference Blinowski J, Rigaux C, Nguyen H (1980) Band structure model and dynamical dielectric function in lowest stages of graphite acceptor compounds. J Phys 41(1):47–58CrossRef Blinowski J, Rigaux C, Nguyen H (1980) Band structure model and dynamical dielectric function in lowest stages of graphite acceptor compounds. J Phys 41(1):47–58CrossRef
46.
go back to reference Blinowski J, Rigaux C (1980) Electronic properties of graphite intercalation compounds. J Phys 41(7):667–674CrossRef Blinowski J, Rigaux C (1980) Electronic properties of graphite intercalation compounds. J Phys 41(7):667–674CrossRef
47.
go back to reference Hau NH, Blinowski J, Rigaux C (1981) Intervalence transitions in graphite acceptor compounds. Synth Met 3:99–105CrossRef Hau NH, Blinowski J, Rigaux C (1981) Intervalence transitions in graphite acceptor compounds. Synth Met 3:99–105CrossRef
48.
go back to reference Matzui LYu, Ovsienko IV, Vovchenko LL (2000) Phonon drag in GICs based on disordered graphite. Mol Cryst Liq Cryst 340(1):319–324CrossRef Matzui LYu, Ovsienko IV, Vovchenko LL (2000) Phonon drag in GICs based on disordered graphite. Mol Cryst Liq Cryst 340(1):319–324CrossRef
49.
go back to reference Buryakov T, Romanenko A, Anikeeva O, Okotrub A, Yudanov N, Kotosonov A (2007) Electrophysical properties of bromine-intercalated low-dimensional carbon structures. Low Temp Phys 33(2):268–271CrossRef Buryakov T, Romanenko A, Anikeeva O, Okotrub A, Yudanov N, Kotosonov A (2007) Electrophysical properties of bromine-intercalated low-dimensional carbon structures. Low Temp Phys 33(2):268–271CrossRef
Metadata
Title
Magnetoresistance of graphite intercalated with cobalt
Authors
Iryna Ovsiienko
Lyudmila Matzui
Igor Berkutov
Il’gar Mirzoiev
Tetyana Len
Yuriy Prylutskyy
Oleksandr Prokopov
Uwe Ritter
Publication date
31-08-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1511-x

Other articles of this Issue 1/2018

Journal of Materials Science 1/2018 Go to the issue

Premium Partners