Skip to main content
Top
Published in: International Journal of Computer Vision 9/2023

07-06-2023 | S.I. : Physics-Based Vision meets Deep Learning

Making the Invisible Visible: Toward High-Quality Terahertz Tomographic Imaging via Physics-Guided Restoration

Authors: Weng-Tai Su, Yi-Chun Hung, Po-Jen Yu, Shang-Hua Yang, Chia-Wen Lin

Published in: International Journal of Computer Vision | Issue 9/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Terahertz (THz) tomographic imaging has recently attracted significant attention thanks to its non-invasive, non-destructive, non-ionizing, material-classification, and ultra-fast nature for object exploration and inspection. However, its strong water absorption nature and low noise tolerance lead to undesired blurs and distortions of reconstructed THz images. The diffraction-limited THz signals highly constrain the performances of existing restoration methods. To address the problem, we propose a novel multi-view Subspace-Attention-guided Restoration Network (SARNet) that fuses multi-view and multi-spectral features of THz images for effective image restoration and 3D tomographic reconstruction. To this end, SARNet uses multi-scale branches to extract intra-view spatio-spectral amplitude and phase features and fuse them via shared subspace projection and self-attention guidance. We then perform inter-view fusion to further improve the restoration of individual views by leveraging the redundancies between neighboring views. Here, we experimentally construct a THz time-domain spectroscopy (THz-TDS) system covering a broad frequency range from 0.1 to 4 THz for building up a temporal/spectral/spatial/material THz database of hidden 3D objects. Complementary to a quantitative evaluation, we demonstrate the effectiveness of our SARNet model on 3D THz tomographic reconstruction applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abbas, A., Abdelsamea, M., & Gaber, M. M. (2021). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Applied Intelligence, 51(2), 854–864.CrossRef Abbas, A., Abdelsamea, M., & Gaber, M. M. (2021). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Applied Intelligence, 51(2), 854–864.CrossRef
go back to reference Abraham, E., Younus, A., Delagnes, T. C., & Mounaix, P. (2010). Non-invasive investigation of art paintings by terahertz imaging. Applied Physics A, 100(3), 585–590.CrossRef Abraham, E., Younus, A., Delagnes, T. C., & Mounaix, P. (2010). Non-invasive investigation of art paintings by terahertz imaging. Applied Physics A, 100(3), 585–590.CrossRef
go back to reference Born, M., & Wolf, E. (2013). Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Born, M., & Wolf, E. (2013). Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light.
go back to reference Bowman, T., Chavez, T., Khan, K., Wu, J., Chakraborty, A., Rajaram, N., Bailey, K., & El-Shenawee, M. (2018). Pulsed terahertz imaging of breast cancer in freshly excised murine tumors. Journal of Biomedical Optics, 23(2), 026004.CrossRef Bowman, T., Chavez, T., Khan, K., Wu, J., Chakraborty, A., Rajaram, N., Bailey, K., & El-Shenawee, M. (2018). Pulsed terahertz imaging of breast cancer in freshly excised murine tumors. Journal of Biomedical Optics, 23(2), 026004.CrossRef
go back to reference Calvin, Y., Shuting, F., Yiwen, S., & Emma, P.-M. (2012). The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quantitative Imaging in Medicine and Surgery, 2(1), 33. Calvin, Y., Shuting, F., Yiwen, S., & Emma, P.-M. (2012). The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quantitative Imaging in Medicine and Surgery, 2(1), 33.
go back to reference Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. In Proceedings of European conference on computer vision (pp. 213–229). Springer. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. In Proceedings of European conference on computer vision (pp. 213–229). Springer.
go back to reference Chapman, D., Homlinson, W., Johnston, R., Washburn, D., Pisano, E., Gmür, N., Zhong, Z., Menk, R., Arfelli, F., & Sayers, D. (1997). Diffraction enhanced X-ray imaging. Journal Physics in Medicine & Biology, 42(11), 2015.CrossRef Chapman, D., Homlinson, W., Johnston, R., Washburn, D., Pisano, E., Gmür, N., Zhong, Z., Menk, R., Arfelli, F., & Sayers, D. (1997). Diffraction enhanced X-ray imaging. Journal Physics in Medicine & Biology, 42(11), 2015.CrossRef
go back to reference Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., & Gao, W. (2021). Pre-trained image processing transformer. In Proceedings of IEEE/CVF conference on computer vision and pattern recognition (pp. 12299–12310). Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C., & Gao, W. (2021). Pre-trained image processing transformer. In Proceedings of IEEE/CVF conference on computer vision and pattern recognition (pp. 12299–12310).
go back to reference Cheng, S., Wang, Y., Huang, H., Liu, D., Fan, H., & Liu, S. (2021). NBNet: Noise basis learning for image denoising with subspace projection. In Proceedings of IEEE/CVF international conference on computer vision and pattern recognition (pp. 4896–4906). Cheng, S., Wang, Y., Huang, H., Liu, D., Fan, H., & Liu, S. (2021). NBNet: Noise basis learning for image denoising with subspace projection. In Proceedings of IEEE/CVF international conference on computer vision and pattern recognition (pp. 4896–4906).
go back to reference Clarke, L., Velthuizen, R., Camacho, M., Heine, J., Vaidyanathan, M., Hall, L., Thatcher, R., & Silbiger, M. (1995). MRI segmentation: Methods and applications. Magnetic Resonance Imaging, 13(3), 343–368.CrossRef Clarke, L., Velthuizen, R., Camacho, M., Heine, J., Vaidyanathan, M., Hall, L., Thatcher, R., & Silbiger, M. (1995). MRI segmentation: Methods and applications. Magnetic Resonance Imaging, 13(3), 343–368.CrossRef
go back to reference Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.-P., & Schlenker, M. (1996). Phase objects in synchrotron radiation hard X-ray imaging. Journal of Physics D: Applied Physics, 29(1), 133.CrossRef Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.-P., & Schlenker, M. (1996). Phase objects in synchrotron radiation hard X-ray imaging. Journal of Physics D: Applied Physics, 29(1), 133.CrossRef
go back to reference de Gonzalez, A. B., & Darby, S. (2004). Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. The Lancet, 363(9406), 345–351.CrossRef de Gonzalez, A. B., & Darby, S. (2004). Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. The Lancet, 363(9406), 345–351.CrossRef
go back to reference Dorney, T. D., Baraniuk, R. G., & Mittleman, D. M. (2001). Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society of America A, 18(7), 1562–1571.CrossRef Dorney, T. D., Baraniuk, R. G., & Mittleman, D. M. (2001). Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society of America A, 18(7), 1562–1571.CrossRef
go back to reference Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:​2010.​11929
go back to reference Fitzgerald, R. (2000). Phase-sensitive X-ray imaging. Physics Today, 53(7), 23–26.CrossRef Fitzgerald, R. (2000). Phase-sensitive X-ray imaging. Physics Today, 53(7), 23–26.CrossRef
go back to reference Fukunaga, K. (2016). THz technology applied to cultural heritage in practice Fukunaga, K. (2016). THz technology applied to cultural heritage in practice
go back to reference Geladi, P., Burger, J., & Lestander, T. (2004). Hyperspectral imaging: Calibration problems and solutions. Chemometrics and Intelligent Laboratory Systems, 72(2), 209–217.CrossRef Geladi, P., Burger, J., & Lestander, T. (2004). Hyperspectral imaging: Calibration problems and solutions. Chemometrics and Intelligent Laboratory Systems, 72(2), 209–217.CrossRef
go back to reference Hack, E., & Zolliker, P. (2014). Terahertz holography for imaging amplitude and phase objects. Optics Express, 22(13), 16079–16086.CrossRef Hack, E., & Zolliker, P. (2014). Terahertz holography for imaging amplitude and phase objects. Optics Express, 22(13), 16079–16086.CrossRef
go back to reference He, K., Zhang, X., Ren, S., Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of IEEE/CVF international conference on computer vision (pp. 1026–1034). He, K., Zhang, X., Ren, S., Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of IEEE/CVF international conference on computer vision (pp. 1026–1034).
go back to reference Hung, Y.-C., & Yang, S.-H. (2019a). Kernel size characterization for deep learning terahertz tomography (pp. 1–2). Hung, Y.-C., & Yang, S.-H. (2019a). Kernel size characterization for deep learning terahertz tomography (pp. 1–2).
go back to reference Hung, Y.-C., & Yang, S.-H. (2019b). Terahertz deep learning computed tomography. In Proceedings of international infrared, millimeter, and terahertz waves (pp. 1–2). IEEE. Hung, Y.-C., & Yang, S.-H. (2019b). Terahertz deep learning computed tomography. In Proceedings of international infrared, millimeter, and terahertz waves (pp. 1–2). IEEE.
go back to reference Janke, C., Först, M., Nagel, M., Kurz, H., & Bartels, A. (2005). Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors. Optics Letters, 30(11), 1405–1407.CrossRef Janke, C., Först, M., Nagel, M., Kurz, H., & Bartels, A. (2005). Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors. Optics Letters, 30(11), 1405–1407.CrossRef
go back to reference Jansen, C., Wietzke, S., Peters, O., Scheller, M., Vieweg, N., Salhi, M., Krumbholz, N., Jördens, C., Hochrein, T., & Koch, M. (2010). Terahertz imaging: Applications and perspectives. Applied Optics, 49(19), 48–57.CrossRef Jansen, C., Wietzke, S., Peters, O., Scheller, M., Vieweg, N., Salhi, M., Krumbholz, N., Jördens, C., Hochrein, T., & Koch, M. (2010). Terahertz imaging: Applications and perspectives. Applied Optics, 49(19), 48–57.CrossRef
go back to reference Jin, K. H., McCann, M. T., Froustey, E., & Unser, M. (2017). Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26(9), 4509–4522.MathSciNetCrossRefMATH Jin, K. H., McCann, M. T., Froustey, E., & Unser, M. (2017). Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26(9), 4509–4522.MathSciNetCrossRefMATH
go back to reference Kak, A. C. (2001). Algorithms for reconstruction with nondiffracting sources. Principles of Computerized Tomographic Imaging, 49–112. Kak, A. C. (2001). Algorithms for reconstruction with nondiffracting sources. Principles of Computerized Tomographic Imaging, 49–112.
go back to reference Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2011). Application of NIR hyperspectral imaging for discrimination of lamb muscles. Journal of Food Engineering, 104(3), 332–340.CrossRef Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2011). Application of NIR hyperspectral imaging for discrimination of lamb muscles. Journal of Food Engineering, 104(3), 332–340.CrossRef
go back to reference Kang, E., Min, J., & Ye, J. C. (2017). A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Journal of Medical physics, 44(10), 360–375.CrossRef Kang, E., Min, J., & Ye, J. C. (2017). A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Journal of Medical physics, 44(10), 360–375.CrossRef
go back to reference Kawase, K., Ogawa, Y., Watanabe, Y., & Inoue, H. (2003). Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Optics Express, 11(20), 2549–2554.CrossRef Kawase, K., Ogawa, Y., Watanabe, Y., & Inoue, H. (2003). Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Optics Express, 11(20), 2549–2554.CrossRef
go back to reference Kim, J., Lim, H., Ahn, S.C., Lee, S. (2018). RGBD camera based material recognition via surface roughness estimation. In: Proceedings of IEEE Winter Conference Applied Computer Vision (pp. 1963–1971). Kim, J., Lim, H., Ahn, S.C., Lee, S. (2018). RGBD camera based material recognition via surface roughness estimation. In: Proceedings of IEEE Winter Conference Applied Computer Vision (pp. 1963–1971).
go back to reference Li, X., & Jarrahi, M. (2020). A 63-pixel plasmonic photoconductive terahertz focal-plane array. In Proceedings of IEEE/MTT-S international microwave symposium (IMS) (pp. 91–94). Li, X., & Jarrahi, M. (2020). A 63-pixel plasmonic photoconductive terahertz focal-plane array. In Proceedings of IEEE/MTT-S international microwave symposium (IMS) (pp. 91–94).
go back to reference Liu, F., Jang, H., Kijowski, R., Bradshaw, T., & McMillan, A. B. (2018). Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology, 286(2), 676–684.CrossRef Liu, F., Jang, H., Kijowski, R., Bradshaw, T., & McMillan, A. B. (2018). Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology, 286(2), 676–684.CrossRef
go back to reference Ljubenovic, M., Bazrafkan, S., Beenhouwer, J. D., & Sijbers, J. (2020). CNN-based deblurring of terahertz images (pp. 323–330). Ljubenovic, M., Bazrafkan, S., Beenhouwer, J. D., & Sijbers, J. (2020). CNN-based deblurring of terahertz images (pp. 323–330).
go back to reference Mao, X., Shen, C., & Yang, Y.-B. (2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In Proceedings of the advances in neural information processing systems (pp. 2802–2810). Mao, X., Shen, C., & Yang, Y.-B. (2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In Proceedings of the advances in neural information processing systems (pp. 2802–2810).
go back to reference Mittleman, D. M. (2018). Twenty years of terahertz imaging. Optics Express, 26(8), 9417–9431.CrossRef Mittleman, D. M. (2018). Twenty years of terahertz imaging. Optics Express, 26(8), 9417–9431.CrossRef
go back to reference Mittleman, D., Gupta, M., Neelamani, R., Baraniuk, R., Rudd, J., & Koch, M. (1999). Recent advances in terahertz imaging. Applied Physics B, 68(6), 1085–1094.CrossRef Mittleman, D., Gupta, M., Neelamani, R., Baraniuk, R., Rudd, J., & Koch, M. (1999). Recent advances in terahertz imaging. Applied Physics B, 68(6), 1085–1094.CrossRef
go back to reference Nunes-Pereira, E., Peixoto, H., Teixeira, J., & Santos, J. (2020). Polarization-coded material classification in automotive LIDAR aiming at safer autonomous driving implementations. Applied Optics, 59(8), 2530–2540.CrossRef Nunes-Pereira, E., Peixoto, H., Teixeira, J., & Santos, J. (2020). Polarization-coded material classification in automotive LIDAR aiming at safer autonomous driving implementations. Applied Optics, 59(8), 2530–2540.CrossRef
go back to reference Ozdemir, A., & Polat, K. (2020). Deep learning applications for hyperspectral imaging: A systematic review. Journal of the Institute of Electronics and Computer, 2(1), 39–56.CrossRef Ozdemir, A., & Polat, K. (2020). Deep learning applications for hyperspectral imaging: A systematic review. Journal of the Institute of Electronics and Computer, 2(1), 39–56.CrossRef
go back to reference Peterson, J., Paerels, F., Kaastra, J., Arnaud, M., Reiprich, T., Fabian, A., Mushotzky, R., Jernigan, J., & Sakelliou, I. (2001). X-ray imaging-spectroscopy of Abell 1835. Journal of Astronomy & Astrophysics, 365(1), 104–109.CrossRef Peterson, J., Paerels, F., Kaastra, J., Arnaud, M., Reiprich, T., Fabian, A., Mushotzky, R., Jernigan, J., & Sakelliou, I. (2001). X-ray imaging-spectroscopy of Abell 1835. Journal of Astronomy & Astrophysics, 365(1), 104–109.CrossRef
go back to reference Popescu, D. C., & Ellicar, A. D. (2010). Point spread function estimation for a terahertz imaging system. EURASIP Journal on Advances in Signal Processing, 2010(1), 575817.CrossRef Popescu, D. C., & Ellicar, A. D. (2010). Point spread function estimation for a terahertz imaging system. EURASIP Journal on Advances in Signal Processing, 2010(1), 575817.CrossRef
go back to reference Popescu, D.C., Hellicar, A., & Li, Y. (2009). Phantom-based point spread function estimation for terahertz imaging system (pp. 629–639). Popescu, D.C., Hellicar, A., & Li, Y. (2009). Phantom-based point spread function estimation for terahertz imaging system (pp. 629–639).
go back to reference Qin, X., Wang, X., Bai, Y., Xie, X., & Jia, H. (2020). FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, pp. 11908–11915). Qin, X., Wang, X., Bai, Y., Xie, X., & Jia, H. (2020). FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, pp. 11908–11915).
go back to reference Recur, B., Guillet, J.-P., Manek-Hönninger, I., Delagnes, J.-C., Benharbone, W., Desbarats, P., Domenger, J.-P., Canioni, L., & Mounaix, P. (2012). Propagation beam consideration for 3D THz computed tomography. Optics Express, 20(6), 5817–5829.CrossRef Recur, B., Guillet, J.-P., Manek-Hönninger, I., Delagnes, J.-C., Benharbone, W., Desbarats, P., Domenger, J.-P., Canioni, L., & Mounaix, P. (2012). Propagation beam consideration for 3D THz computed tomography. Optics Express, 20(6), 5817–5829.CrossRef
go back to reference Recur, B., Younus, A., Salort, S., Mounaix, P., Chassagne, B., Desbarats, P., Caumes, J., & Abraham, E. (2011). Investigation on reconstruction methods applied to 3D terahertz computed tomography. Optics Express, 19(6), 5105–5117.CrossRef Recur, B., Younus, A., Salort, S., Mounaix, P., Chassagne, B., Desbarats, P., Caumes, J., & Abraham, E. (2011). Investigation on reconstruction methods applied to 3D terahertz computed tomography. Optics Express, 19(6), 5105–5117.CrossRef
go back to reference Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of international conference on medical image computing and computer-assisted intervention (pp. 234–241). Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of international conference on medical image computing and computer-assisted intervention (pp. 234–241).
go back to reference Rotermund, H. H., Engel, W., Jakubith, S., Von Oertzen, A., & Ertl, G. (1991). Methods and application of UV photoelectron microscopy in heterogenous catalysis. Ultramicroscopy, 36(1–3), 164–172.CrossRef Rotermund, H. H., Engel, W., Jakubith, S., Von Oertzen, A., & Ertl, G. (1991). Methods and application of UV photoelectron microscopy in heterogenous catalysis. Ultramicroscopy, 36(1–3), 164–172.CrossRef
go back to reference Round, A. R., Wilkinson, S. J., Hall, C. J., Rogers, K. D., Glatter, O., Wess, T., & Ellis, I. O. (2005). A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering. Physics in Medicine & Biology, 50(17), 4159.CrossRef Round, A. R., Wilkinson, S. J., Hall, C. J., Rogers, K. D., Glatter, O., Wess, T., & Ellis, I. O. (2005). A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering. Physics in Medicine & Biology, 50(17), 4159.CrossRef
go back to reference Saeedkia, D. (2013). Handbook of terahertz technology for imaging, sensing and communications (pp. 542–578). Cambridge: Woodhead Publishing.CrossRef Saeedkia, D. (2013). Handbook of terahertz technology for imaging, sensing and communications (pp. 542–578). Cambridge: Woodhead Publishing.CrossRef
go back to reference Sakdinawat, A., & Attwood, D. (2010). Nanoscale X-ray imaging. Nature Photonics, 4(12), 840.CrossRef Sakdinawat, A., & Attwood, D. (2010). Nanoscale X-ray imaging. Nature Photonics, 4(12), 840.CrossRef
go back to reference Schultz, R., Nielsen, T., Zavaleta, R. J., Wyatt, R., & Garner, H. (2001). Hyperspectral imaging: A novel approach for microscopic analysis. Cytometry, 43(4), 239–247.CrossRef Schultz, R., Nielsen, T., Zavaleta, R. J., Wyatt, R., & Garner, H. (2001). Hyperspectral imaging: A novel approach for microscopic analysis. Cytometry, 43(4), 239–247.CrossRef
go back to reference Su, W.-T., Hung, Y.-C., Yu, P.-J., Lin, C.-W., & Yang, S.-H. (2023). Physics-guided terahertz computational imaging: A tutorial on sate-of-the-art techniques. IEEE Signal Processing Magazine, 40(2), 32–45.CrossRef Su, W.-T., Hung, Y.-C., Yu, P.-J., Lin, C.-W., & Yang, S.-H. (2023). Physics-guided terahertz computational imaging: A tutorial on sate-of-the-art techniques. IEEE Signal Processing Magazine, 40(2), 32–45.CrossRef
go back to reference Su, W.-T., Hung, Y.-C., Yu, P.-J., Yang, S.-H., & Lin, C.-W. (2022). Seeing through a black box: Toward high-quality terahertz tomographic imaging via multi-scale spatio-spectral image fusion. In Proceedings of the European conference on computer vision. Su, W.-T., Hung, Y.-C., Yu, P.-J., Yang, S.-H., & Lin, C.-W. (2022). Seeing through a black box: Toward high-quality terahertz tomographic imaging via multi-scale spatio-spectral image fusion. In Proceedings of the European conference on computer vision.
go back to reference Tuan, T. M., Fujita, H., Dey, N., Ashour, A. S., Ngoc, T. N., & Chu, D.-T. (2018). Dental diagnosis from X-ray images: An expert system based on fuzzy computing. Biomedical Signal Processing and Control, 39, 64–73.CrossRef Tuan, T. M., Fujita, H., Dey, N., Ashour, A. S., Ngoc, T. N., & Chu, D.-T. (2018). Dental diagnosis from X-ray images: An expert system based on fuzzy computing. Biomedical Signal Processing and Control, 39, 64–73.CrossRef
go back to reference Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., & Polosukhin, I. (2017) Attention is all you need. In Proceedings of advances in neural information processing systems (vol. 30). Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., & Polosukhin, I. (2017) Attention is all you need. In Proceedings of advances in neural information processing systems (vol. 30).
go back to reference Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., & Li, H. (2022). Uformer: A general U-shaped transformer for image restoration. In Proceedings of IEEE/CVF conference on computer vision and pattern recognition (pp. 17683–17693). Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., & Li, H. (2022). Uformer: A general U-shaped transformer for image restoration. In Proceedings of IEEE/CVF conference on computer vision and pattern recognition (pp. 17683–17693).
go back to reference Wong, T. M., Kahl, M., & Bolívar, P.H., Kolb, A. (2019). Computational image enhancement for frequency modulated continuous wave (FMCW) THz image. Journal of Infrared, Millimeter, and Terahertz Waves, 40(7), 775–800. Wong, T. M., Kahl, M., & Bolívar, P.H., Kolb, A. (2019). Computational image enhancement for frequency modulated continuous wave (FMCW) THz image. Journal of Infrared, Millimeter, and Terahertz Waves, 40(7), 775–800.
go back to reference Wong, T. M., Kahl, M., Haring-Bolívar, P., Kolb, A., & Möller, M. (2019). Training auto-encoder-based optimizers for terahertz image reconstruction (pp. 93–106). Wong, T. M., Kahl, M., Haring-Bolívar, P., Kolb, A., & Möller, M. (2019). Training auto-encoder-based optimizers for terahertz image reconstruction (pp. 93–106).
go back to reference Wu, B., Xu, C., Dai, X., Wan, A., Zhang, P., Yan, Z., Tomizuka, M., Gonzalez, J., Keutzer, K., & Vajda, P. (2020). Visual transformers: Token-based image representation and processing for computer vision. arXiv preprint arXiv:2006.03677. Wu, B., Xu, C., Dai, X., Wan, A., Zhang, P., Yan, Z., Tomizuka, M., Gonzalez, J., Keutzer, K., & Vajda, P. (2020). Visual transformers: Token-based image representation and processing for computer vision. arXiv preprint arXiv:​2006.​03677.
go back to reference Xie, H., Yao, H., Zhang, S. P., Zhou, S. C., & Sun, W. X. (2020). Pix2Vox++: Multi-scale context-aware 3D object reconstruction from single and multiple images. International Journal of Computer Vision, 128(12), 2919–2935.CrossRef Xie, H., Yao, H., Zhang, S. P., Zhou, S. C., & Sun, W. X. (2020). Pix2Vox++: Multi-scale context-aware 3D object reconstruction from single and multiple images. International Journal of Computer Vision, 128(12), 2919–2935.CrossRef
go back to reference Xie, X. (2008). A review of recent advances in surface defect detection using texture analysis techniques. ELCVIA: Electronic Letters on Computer Vision and Image Analysis, 1–22 Xie, X. (2008). A review of recent advances in surface defect detection using texture analysis techniques. ELCVIA: Electronic Letters on Computer Vision and Image Analysis, 1–22
go back to reference Yujiri, L., Shoucri, M., & Moffa, P. (2003). Passive millimeter wave imaging. IEEE Microwave Magazine, 4(3), 39–50.CrossRef Yujiri, L., Shoucri, M., & Moffa, P. (2003). Passive millimeter wave imaging. IEEE Microwave Magazine, 4(3), 39–50.CrossRef
go back to reference Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2019). Self-attention generative adversarial networks. In Proceedings of international conference on machine learning (pp. 7354–7363). Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2019). Self-attention generative adversarial networks. In Proceedings of international conference on machine learning (pp. 7354–7363).
go back to reference Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155.MathSciNetCrossRefMATH Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155.MathSciNetCrossRefMATH
go back to reference Zhang, K., Zuo, W. M., & Zhang, L. (2018). FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Transactions on Image Processing, 27(9), 4608–4622.MathSciNetCrossRef Zhang, K., Zuo, W. M., & Zhang, L. (2018). FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Transactions on Image Processing, 27(9), 4608–4622.MathSciNetCrossRef
go back to reference Zhang, Y., Tian, Y., Kong, Y., Zhong, B., & Fu, Y. (2020). Residual dense network for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., & Fu, Y. (2020). Residual dense network for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence.
go back to reference Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., & Ren, J. (2019). Spatio-temporal filter adaptive network for video deblurring. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2482–2491). Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., & Ren, J. (2019). Spatio-temporal filter adaptive network for video deblurring. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2482–2491).
go back to reference Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, R. B., & Rosen, M. S. (2018). Image reconstruction by domain-transform manifold learning. Nature, 555(7697), 487–492.CrossRef Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, R. B., & Rosen, M. S. (2018). Image reconstruction by domain-transform manifold learning. Nature, 555(7697), 487–492.CrossRef
Metadata
Title
Making the Invisible Visible: Toward High-Quality Terahertz Tomographic Imaging via Physics-Guided Restoration
Authors
Weng-Tai Su
Yi-Chun Hung
Po-Jen Yu
Shang-Hua Yang
Chia-Wen Lin
Publication date
07-06-2023
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 9/2023
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-023-01812-y

Other articles of this Issue 9/2023

International Journal of Computer Vision 9/2023 Go to the issue

Premium Partner