Skip to main content
Top

2017 | OriginalPaper | Chapter

Mass Spectrometry Analysis Using MALDIquant

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

MALDIquant and associated R packages provide a versatile and completely free open-source platform for analyzing 2D mass spectrometry data as generated, for instance, by MALDI and SELDI instruments. We first describe the various methods and algorithms available in MALDIquant. Subsequently, we illustrate a typical analysis workflow using MALDIquant by investigating an experimental cancer data set, starting from raw mass spectrometry measurements and ending at multivariate classification.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422, 198–207.CrossRef Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422, 198–207.CrossRef
2.
go back to reference Ahdesmäki, M., & Strimmer, K. (2010). Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. The Annals of Applied Statistics, 4(1), 503–519.MathSciNetCrossRefMATH Ahdesmäki, M., & Strimmer, K. (2010). Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. The Annals of Applied Statistics, 4(1), 503–519.MathSciNetCrossRefMATH
3.
go back to reference Andrew, M. A. (1979). Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters, 9, 216–219. Amsterdam: Elsevier. Andrew, M. A. (1979). Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters, 9, 216–219. Amsterdam: Elsevier.
4.
go back to reference Baggerly, K. A., Morris, J. S., & Coombes, K. R. (2004). Reproducibility of SELDI-TOF protein patterns in serum: Comparing datasets from different experiments. Bioinformatics, 20, 777–785.CrossRef Baggerly, K. A., Morris, J. S., & Coombes, K. R. (2004). Reproducibility of SELDI-TOF protein patterns in serum: Comparing datasets from different experiments. Bioinformatics, 20, 777–785.CrossRef
5.
go back to reference Bloemberg, T. G., Gerretzen, J., Wouters, H. J. P., Gloerich, J., van Dael, M., Wessels, H. J. C. T., et al. (2010). Improved parametric time warping for proteomics. Chemometrics and Intelligent Laboratory Systems, 104, 65–74.CrossRef Bloemberg, T. G., Gerretzen, J., Wouters, H. J. P., Gloerich, J., van Dael, M., Wessels, H. J. C. T., et al. (2010). Improved parametric time warping for proteomics. Chemometrics and Intelligent Laboratory Systems, 104, 65–74.CrossRef
6.
go back to reference Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193.CrossRef Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193.CrossRef
7.
go back to reference Borgaonkar, S. P., Hocker, H., Shin, H., & Markey, M. K. (2010). Comparison of normalization methods for the identification of biomarkers using MALDI-TOF and SELDI-TOF mass spectra. OMICS, 14, 115–126.CrossRef Borgaonkar, S. P., Hocker, H., Shin, H., & Markey, M. K. (2010). Comparison of normalization methods for the identification of biomarkers using MALDI-TOF and SELDI-TOF mass spectra. OMICS, 14, 115–126.CrossRef
9.
go back to reference Bromba, M. U. A., & Ziegler, H. (1981). Application hints for Savitzky–Golay digital smoothing filters. Analytical Chemistry, 53(11), 1583–1586.CrossRef Bromba, M. U. A., & Ziegler, H. (1981). Application hints for Savitzky–Golay digital smoothing filters. Analytical Chemistry, 53(11), 1583–1586.CrossRef
10.
go back to reference Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T., Qian, W.-J., Webb-Robertson, B.-J. M., et al. (2006). Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. Journal of Proteome Research, 5, 277–286.CrossRef Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T., Qian, W.-J., Webb-Robertson, B.-J. M., et al. (2006). Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. Journal of Proteome Research, 5, 277–286.CrossRef
11.
go back to reference Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., et al. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918–920.CrossRef Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., et al. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918–920.CrossRef
12.
go back to reference Clifford, D., Montoliu, G. S. I., Rezzi, S., Martin, F.-P., Guy, P., Bruce, S., et al. (2009). Alignment using variable penalty dynamic time warping. Analytical Chemistry, 81, 1000–1007.CrossRef Clifford, D., Montoliu, G. S. I., Rezzi, S., Martin, F.-P., Guy, P., Bruce, S., et al. (2009). Alignment using variable penalty dynamic time warping. Analytical Chemistry, 81, 1000–1007.CrossRef
13.
go back to reference Coombes, K. R., Tsavachidis, S., Morris, J. S., Baggerly, K. A., Hung, M.-C., & Kuerer, H. M. (2005). Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics, 5, 4107–4117.CrossRef Coombes, K. R., Tsavachidis, S., Morris, J. S., Baggerly, K. A., Hung, M.-C., & Kuerer, H. M. (2005). Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics, 5, 4107–4117.CrossRef
14.
go back to reference Cornett, D. S., Reyzer, M. L., Chaurand, P., & Caprioli, R. M. (2007). MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems. Nature Methods, 4, 828–833.CrossRef Cornett, D. S., Reyzer, M. L., Chaurand, P., & Caprioli, R. M. (2007). MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems. Nature Methods, 4, 828–833.CrossRef
15.
go back to reference Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290.CrossRef Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290.CrossRef
16.
go back to reference Du, P., Kibbe, W. A., & Lin, S. M. (2006). Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 22, 2059–2065.CrossRef Du, P., Kibbe, W. A., & Lin, S. M. (2006). Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 22, 2059–2065.CrossRef
17.
go back to reference Du, P., Stolovitzky, G., Horvatovich, P., Bischoff, R., Lim, J., & Suits, F. (2008). A noise model for mass spectrometry based proteomics. Bioinformatics, 24, 1070–1077.CrossRef Du, P., Stolovitzky, G., Horvatovich, P., Bischoff, R., Lim, J., & Suits, F. (2008). A noise model for mass spectrometry based proteomics. Bioinformatics, 24, 1070–1077.CrossRef
18.
go back to reference Fiedler, G. M., Leichtle, A. B., Kase, J., Baumann, S., Ceglarek, U., Felix, K., et al. (2009). Serum peptidome profiling revealed platelet factor 4 as a potential discriminating peptide associated with pancreatic cancer. Clinical Cancer Research, 15, 3812–3819.CrossRef Fiedler, G. M., Leichtle, A. B., Kase, J., Baumann, S., Ceglarek, U., Felix, K., et al. (2009). Serum peptidome profiling revealed platelet factor 4 as a potential discriminating peptide associated with pancreatic cancer. Clinical Cancer Research, 15, 3812–3819.CrossRef
19.
go back to reference Friedman, J. H. (1984). A variable span smoother. Technical Report, DTIC Document. Friedman, J. H. (1984). A variable span smoother. Technical Report, DTIC Document.
20.
go back to reference Gammerman, A., Nouretdinov, I., Burford, B., Chervonenkis, A., Vovk, V., & Luo, Z. (2008). Clinical mass spectrometry proteomic diagnosis by conformal predictors. Statistical Applications in Genetics and Molecular Biology, 7, 13.MathSciNetCrossRef Gammerman, A., Nouretdinov, I., Burford, B., Chervonenkis, A., Vovk, V., & Luo, Z. (2008). Clinical mass spectrometry proteomic diagnosis by conformal predictors. Statistical Applications in Genetics and Molecular Biology, 7, 13.MathSciNetCrossRef
21.
go back to reference Gibb, S., & Strimmer, K. (2012). MALDIquant: A versatile R package for the analysis of mass spectrometry data. Bioinformatics, 28, 2270–2271.CrossRef Gibb, S., & Strimmer, K. (2012). MALDIquant: A versatile R package for the analysis of mass spectrometry data. Bioinformatics, 28, 2270–2271.CrossRef
22.
go back to reference Gibb, S., & Strimmer, K. (2015). Differential protein expression and peak selection in mass spectrometry data by binary discriminant analysis. Bioinformatics, 31, 3156–3162.CrossRef Gibb, S., & Strimmer, K. (2015). Differential protein expression and peak selection in mass spectrometry data by binary discriminant analysis. Bioinformatics, 31, 3156–3162.CrossRef
23.
go back to reference Gil, J. Y., & Kimmel, R. (2002). Efficient dilation, erosion, opening, and closing algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1606–1617.CrossRefMATH Gil, J. Y., & Kimmel, R. (2002). Efficient dilation, erosion, opening, and closing algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1606–1617.CrossRefMATH
24.
go back to reference Gregori, J., Villarreal, L., Méndez, O., Sánchez, A., Baselga, J., & Villanueva, J. (2012). Batch effects correction improves the sensitivity of significance tests in spectral counting-based comparative discovery proteomics. Journal of Proteomics, 75(13), 3938–3951.CrossRef Gregori, J., Villarreal, L., Méndez, O., Sánchez, A., Baselga, J., & Villanueva, J. (2012). Batch effects correction improves the sensitivity of significance tests in spectral counting-based comparative discovery proteomics. Journal of Proteomics, 75(13), 3938–3951.CrossRef
25.
go back to reference He, Q. P., Wang, J., Mobley, J. A., Richman, J., & Grizzle, W. E. (2011). Self-calibrated warping for mass spectra alignment. Cancer Informatics, 10, 65–82.CrossRef He, Q. P., Wang, J., Mobley, J. A., Richman, J., & Grizzle, W. E. (2011). Self-calibrated warping for mass spectra alignment. Cancer Informatics, 10, 65–82.CrossRef
26.
go back to reference House, L. L., Clyde, M. A., & Wolpert, R. L. (2011). Bayesian nonparametric models for peak identification in MALDI-TOF mass spectroscopy. The Annals of Applied Statistics, 5, 1488–1511.MathSciNetCrossRefMATH House, L. L., Clyde, M. A., & Wolpert, R. L. (2011). Bayesian nonparametric models for peak identification in MALDI-TOF mass spectroscopy. The Annals of Applied Statistics, 5, 1488–1511.MathSciNetCrossRefMATH
27.
go back to reference Hu, J., Coombes, K. R., Morris, J. S., & Baggerly, K. A. (2005). The importance of experimental design in proteomic mass spectrometry experiments: Some cautionary tales. Briefings in Functional Genomics and Proteomics, 3, 322–331.CrossRef Hu, J., Coombes, K. R., Morris, J. S., & Baggerly, K. A. (2005). The importance of experimental design in proteomic mass spectrometry experiments: Some cautionary tales. Briefings in Functional Genomics and Proteomics, 3, 322–331.CrossRef
28.
go back to reference Jeffries, N. (2005). Algorithms for alignment of mass spectrometry proteomic data. Bioinformatics, 21, 3066–3073.CrossRef Jeffries, N. (2005). Algorithms for alignment of mass spectrometry proteomic data. Bioinformatics, 21, 3066–3073.CrossRef
29.
go back to reference Kim, S., Koo, I., Fang, A., & Zhang, X. (2011). Smith-Waterman peak alignment for comprehensive two-dimensional gas chromatography-mass spectrometry. BMC Bioinformatics, 12, 235.CrossRef Kim, S., Koo, I., Fang, A., & Zhang, X. (2011). Smith-Waterman peak alignment for comprehensive two-dimensional gas chromatography-mass spectrometry. BMC Bioinformatics, 12, 235.CrossRef
30.
go back to reference Lange, E., Gröpl, C., Reinert, K., Kohlbacher, O., & Hildebrandt, A. (2006). High-accuracy peak picking of proteomics data using wavelet techniques. In Pacific Symposium on Biocomputing (Vol. 11, pp. 243–254). Lange, E., Gröpl, C., Reinert, K., Kohlbacher, O., & Hildebrandt, A. (2006). High-accuracy peak picking of proteomics data using wavelet techniques. In Pacific Symposium on Biocomputing (Vol. 11, pp. 243–254).
31.
go back to reference Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11, 733–739.CrossRef Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11, 733–739.CrossRef
32.
go back to reference Leichtle, A. B., Dufour, J.-F., & Fiedler, G. M. (2013). Potentials and pitfalls of clinical peptidomics and metabolomics. Swiss Medical Weekly, 143, w13801. Leichtle, A. B., Dufour, J.-F., & Fiedler, G. M. (2013). Potentials and pitfalls of clinical peptidomics and metabolomics. Swiss Medical Weekly, 143, w13801.
33.
go back to reference Li, X. (2005). PROcess: Ciphergen SELDI-TOF Processing. R package version 1.44.0. Li, X. (2005). PROcess: Ciphergen SELDI-TOF Processing. R package version 1.44.0.
34.
go back to reference Lilley, K. S., Deery, M. J., & Gatto, L. (2011). Challenges for proteomics core facilities. Proteomics, 11(6), 1017–1025.CrossRef Lilley, K. S., Deery, M. J., & Gatto, L. (2011). Challenges for proteomics core facilities. Proteomics, 11(6), 1017–1025.CrossRef
35.
go back to reference Lin, S. M., Haney, R. P., Campa, M. J., Fitzgerald, M. C., & Patz, E. F. (2005). Characterising phase variations in MALDI-TOF data & correcting them by peak alignment. Cancer Informatics, 1, 32–40. Lin, S. M., Haney, R. P., Campa, M. J., Fitzgerald, M. C., & Patz, E. F. (2005). Characterising phase variations in MALDI-TOF data & correcting them by peak alignment. Cancer Informatics, 1, 32–40.
36.
go back to reference Liu, Q., Krishnapuram, B., Pratapa, P., Liao, X., Hartemink, A., & Carin, L. (2003). Identification of differentially expressed proteins using MALDI-TOF mass spectra. Signals, Systems & Computers, 2003. Conference Record (Vol. 2, pp. 1323–1327). Liu, Q., Krishnapuram, B., Pratapa, P., Liao, X., Hartemink, A., & Carin, L. (2003). Identification of differentially expressed proteins using MALDI-TOF mass spectra. Signals, Systems & Computers, 2003. Conference Record (Vol. 2, pp. 1323–1327).
37.
go back to reference Liu, Q., Sung, A. H., Qiao, M., Chen, Z., Yang, J. Y., Yang, M. Q., et al. (2009). Comparison of feature selection & classification for MALDI-MS data. BMC Genomics, 10(Suppl 1), S3.CrossRef Liu, Q., Sung, A. H., Qiao, M., Chen, Z., Yang, J. Y., Yang, M. Q., et al. (2009). Comparison of feature selection & classification for MALDI-MS data. BMC Genomics, 10(Suppl 1), S3.CrossRef
38.
go back to reference Liu, L. H., Shan, B. E., Tian, Z. Q., Sang, M. X., Ai, J., Zhang, Z. F., et al. (2010). Potential biomarkers for esophageal carcinoma detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry & Laboratory Medicine, 486, 855–861. Liu, L. H., Shan, B. E., Tian, Z. Q., Sang, M. X., Ai, J., Zhang, Z. F., et al. (2010). Potential biomarkers for esophageal carcinoma detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry & Laboratory Medicine, 486, 855–861.
39.
go back to reference Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., et al. (2011). mzML–a community standard for mass spectrometry data. Molecular & Cellular Proteomics, 10, R110.000133. Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., et al. (2011). mzML–a community standard for mass spectrometry data. Molecular & Cellular Proteomics, 10, R110.000133.
40.
go back to reference Mertens, B. J. A., de Noo, M. E., Tollenaar, R. A. E. M., & Deelder, A. M. (2006). Mass spectrometry proteomic diagnosis: Enacting the double cross-validatory paradigm. Journal of Computational Biology, 13, 1591–1605.MathSciNetCrossRef Mertens, B. J. A., de Noo, M. E., Tollenaar, R. A. E. M., & Deelder, A. M. (2006). Mass spectrometry proteomic diagnosis: Enacting the double cross-validatory paradigm. Journal of Computational Biology, 13, 1591–1605.MathSciNetCrossRef
41.
go back to reference Meuleman, W., Engwegen, J. Y., Gast, M.-C. W., Beijnen, J. H., Reinders, M. J., & Wessels, L. F. (2008). Comparison of normalisation methods for surface-enhanced laser desorption and ionisation (SELDI) time-of-flight (TOF) mass spectrometry data. BMC Bioinformatics, 9, 88.CrossRef Meuleman, W., Engwegen, J. Y., Gast, M.-C. W., Beijnen, J. H., Reinders, M. J., & Wessels, L. F. (2008). Comparison of normalisation methods for surface-enhanced laser desorption and ionisation (SELDI) time-of-flight (TOF) mass spectrometry data. BMC Bioinformatics, 9, 88.CrossRef
42.
go back to reference Morhác, M. (2009). An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600, 478–487.CrossRef Morhác, M. (2009). An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600, 478–487.CrossRef
43.
go back to reference Morris, J. S., Baggerly, K. A., Gutstein, H. B., & Coombes, K. R. (2010). Statistical contributions to proteomic research. Methods in Molecular Biology, 641, 143–166.CrossRef Morris, J. S., Baggerly, K. A., Gutstein, H. B., & Coombes, K. R. (2010). Statistical contributions to proteomic research. Methods in Molecular Biology, 641, 143–166.CrossRef
44.
go back to reference Morris, J. S., Coombes, K. R., Koomen, J., Baggerly, K. A., & Kobayashi, R. (2005). Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics, 21, 1764–1775.CrossRef Morris, J. S., Coombes, K. R., Koomen, J., Baggerly, K. A., & Kobayashi, R. (2005). Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics, 21, 1764–1775.CrossRef
45.
go back to reference Norris, J. L., Cornett, D. S., Mobley, J. A., Andersson, M., Seeley, E. H., Chaurand, P., et al. (2007). Processing MALDI mass spectra to improve mass spectral direct tissue analysis. International Journal of Mass Spectrometry, 260, 212–221.CrossRef Norris, J. L., Cornett, D. S., Mobley, J. A., Andersson, M., Seeley, E. H., Chaurand, P., et al. (2007). Processing MALDI mass spectra to improve mass spectral direct tissue analysis. International Journal of Mass Spectrometry, 260, 212–221.CrossRef
46.
go back to reference Pedrioli, P. G. A., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., et al. (2004). A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnology, 22, 1459–1466.CrossRef Pedrioli, P. G. A., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., et al. (2004). A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnology, 22, 1459–1466.CrossRef
47.
go back to reference Purohit, P. V., & Rocke, D. M. (2003). Discriminant models for high-throughput proteomics mass spectrometer data. Proteomics, 3, 1699–1703.CrossRef Purohit, P. V., & Rocke, D. M. (2003). Discriminant models for high-throughput proteomics mass spectrometer data. Proteomics, 3, 1699–1703.CrossRef
48.
go back to reference R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
49.
go back to reference Robb, R. A., Hanson, D. P., Karwoski, R. A., Larson, A. G., Workman, E. L., & Stacy, M. C. (1989). Analyze: A comprehensive, operator-interactive software package for multidimensional medical image display and analysis. Computerized Medical Imaging and Graphics, 13, 433–454.CrossRef Robb, R. A., Hanson, D. P., Karwoski, R. A., Larson, A. G., Workman, E. L., & Stacy, M. C. (1989). Analyze: A comprehensive, operator-interactive software package for multidimensional medical image display and analysis. Computerized Medical Imaging and Graphics, 13, 433–454.CrossRef
50.
go back to reference Ryan, C. G., Clayton, E., Griffin, W. L., Sie, S. H., & Cousens, D. R. (1988). SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 34, 396–402.CrossRef Ryan, C. G., Clayton, E., Griffin, W. L., Sie, S. H., & Cousens, D. R. (1988). SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 34, 396–402.CrossRef
51.
go back to reference Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26, 43–49.CrossRefMATH Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26, 43–49.CrossRefMATH
52.
go back to reference Sauve, A. C., & Speed, T. P. (2004). Normalization, baseline correction and alignment of high-throughput mass spectrometry data. In Proceedings of the Data Proceedings Gensips. Sauve, A. C., & Speed, T. P. (2004). Normalization, baseline correction and alignment of high-throughput mass spectrometry data. In Proceedings of the Data Proceedings Gensips.
53.
go back to reference Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.CrossRef Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.CrossRef
54.
go back to reference Schramm, T., Hester, A., Klinkert, I., Both, J.-P., Heeren, R. M. A., Brunelle, A., et al. (2012). imzML–a common data format for the flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics, 75, 5106–5110.CrossRef Schramm, T., Hester, A., Klinkert, I., Both, J.-P., Heeren, R. M. A., Brunelle, A., et al. (2012). imzML–a common data format for the flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics, 75, 5106–5110.CrossRef
55.
go back to reference Shin, H., & Markey, M. K. (2006). A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples. Journal of Biomedical Informatics, 39, 227–248.CrossRef Shin, H., & Markey, M. K. (2006). A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples. Journal of Biomedical Informatics, 39, 227–248.CrossRef
56.
go back to reference Sköld, M., Rydén, T., Samuelsson, V., Bratt, C., Ekblad, L., Olsson, H., et al. (2007). Regression analysis and modelling of data acquisition for SELDI-TOF mass spectrometry. Bioinformatics, 23, 1401–1409.CrossRef Sköld, M., Rydén, T., Samuelsson, V., Bratt, C., Ekblad, L., Olsson, H., et al. (2007). Regression analysis and modelling of data acquisition for SELDI-TOF mass spectrometry. Bioinformatics, 23, 1401–1409.CrossRef
57.
go back to reference Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.CrossRef Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.CrossRef
58.
go back to reference Smith, R., Ventura, D., & Prince, J. T. (2013). LC-MS alignment in theory and practice: A comprehensive algorithmic review. Briefings in Bioinformatics, 16(1), 104–117.CrossRef Smith, R., Ventura, D., & Prince, J. T. (2013). LC-MS alignment in theory and practice: A comprehensive algorithmic review. Briefings in Bioinformatics, 16(1), 104–117.CrossRef
59.
go back to reference Strimmer, K. (2014). crossval: Generic functions for cross validation. R package version 1.0.1. Strimmer, K. (2014). crossval: Generic functions for cross validation. R package version 1.0.1.
60.
go back to reference Tibshirani, R., Hastie, T., Narsimhan, B., & Chu, G. (2003). Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statistical Science, 18, 104–117.MathSciNetCrossRefMATH Tibshirani, R., Hastie, T., Narsimhan, B., & Chu, G. (2003). Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statistical Science, 18, 104–117.MathSciNetCrossRefMATH
61.
go back to reference Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., et al. (2004). Sample classification from protein mass spectrometry, by ‘peak probability contrasts’. Bioinformatics, 20, 3034–3044.CrossRef Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., et al. (2004). Sample classification from protein mass spectrometry, by ‘peak probability contrasts’. Bioinformatics, 20, 3034–3044.CrossRef
62.
go back to reference Toppoo, S., Roveri, A., Vitale, M. P., Zaccarin, M., Serain, E., Apostolidis, E., et al. (2008). MPA: A multiple peak alignment algorithm to perform multiple comparisons of liquid-phase proteomic profiles. Proteomics, 8, 250–253.CrossRef Toppoo, S., Roveri, A., Vitale, M. P., Zaccarin, M., Serain, E., Apostolidis, E., et al. (2008). MPA: A multiple peak alignment algorithm to perform multiple comparisons of liquid-phase proteomic profiles. Proteomics, 8, 250–253.CrossRef
63.
go back to reference Torgrip, R. J. O., Åberg, M., Karlberg, B., & Jacobsson, S. P. (2003). Peak alignment using reduced set mapping. Journal of Chemometrics, 17, 573–582.CrossRef Torgrip, R. J. O., Åberg, M., Karlberg, B., & Jacobsson, S. P. (2003). Peak alignment using reduced set mapping. Journal of Chemometrics, 17, 573–582.CrossRef
64.
go back to reference Tracy, M. B., Chen, H., Weaver, D. M., Malyarenko, D. I., Sasinowski, M., Cazares, L. H., et al. (2008). Precision enhancement of MALDI-TOF MS using high resolution peak detection and label-free alignment. Proteomics, 8, 1530–1538.CrossRef Tracy, M. B., Chen, H., Weaver, D. M., Malyarenko, D. I., Sasinowski, M., Cazares, L. H., et al. (2008). Precision enhancement of MALDI-TOF MS using high resolution peak detection and label-free alignment. Proteomics, 8, 1530–1538.CrossRef
65.
go back to reference van Herk, M. (1992). A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels. Pattern Recognition Letters, 13, 517–521.CrossRef van Herk, M. (1992). A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels. Pattern Recognition Letters, 13, 517–521.CrossRef
66.
go back to reference Veselkov, K. A., Lindon, J. C., Ebbels, T. M. D., Crockford, D., Volynkin, V. V., Holmes, E., et al. (2009). Recursive segment-wise peak alignment of biological (1)h NMR spectra for improved metabolic biomarker recovery. Analytical Chemistry, 81, 56–66.CrossRef Veselkov, K. A., Lindon, J. C., Ebbels, T. M. D., Crockford, D., Volynkin, V. V., Holmes, E., et al. (2009). Recursive segment-wise peak alignment of biological (1)h NMR spectra for improved metabolic biomarker recovery. Analytical Chemistry, 81, 56–66.CrossRef
67.
go back to reference Wang, B., Fang, A., Heim, J., Bogdanov, B., Pugh, S., Libardoni, M., et al. (2010). DISCO: distance and spectrum correlation optimization alignment for two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics. Analytical Chemistry, 82, 5069–5081.CrossRef Wang, B., Fang, A., Heim, J., Bogdanov, B., Pugh, S., Libardoni, M., et al. (2010). DISCO: distance and spectrum correlation optimization alignment for two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics. Analytical Chemistry, 82, 5069–5081.CrossRef
68.
go back to reference Wehrens, R., Bloemberg, T., & Eilers, P. (2015). Fast parametric time warping of peak lists. Bioinformatics, 15, 3063–3065.CrossRef Wehrens, R., Bloemberg, T., & Eilers, P. (2015). Fast parametric time warping of peak lists. Bioinformatics, 15, 3063–3065.CrossRef
69.
go back to reference Williams, B., Cornett, S., Dawant, B., Crecelius, A., Bodenheimer, B., & Caprioli, R. (2005). An algorithm for baseline correction of MALDI mass spectra. In Proceedings of the 43rd Annual Southeast Regional Conference (Vol. 1, pp. 137–142). ACM-SE 43. Williams, B., Cornett, S., Dawant, B., Crecelius, A., Bodenheimer, B., & Caprioli, R. (2005). An algorithm for baseline correction of MALDI mass spectra. In Proceedings of the 43rd Annual Southeast Regional Conference (Vol. 1, pp. 137–142). ACM-SE 43.
70.
go back to reference Yasui, Y., McLerran, D., Adam, B., Winget, M., Thornquist, M., & Feng, Z. (2003). An automated peak-identification/calibration procedure for high-dimensional protein measures from mass spectrometers. Journal of Biomedicine and Biotechnology, 4, 242–248.CrossRef Yasui, Y., McLerran, D., Adam, B., Winget, M., Thornquist, M., & Feng, Z. (2003). An automated peak-identification/calibration procedure for high-dimensional protein measures from mass spectrometers. Journal of Biomedicine and Biotechnology, 4, 242–248.CrossRef
71.
go back to reference Yasui, Y., Pepe, M., Thompson, M. L., Adam, B.-L., Wright, G. L., Qu, Y., et al. (2003). A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics, 4, 449–463.CrossRefMATH Yasui, Y., Pepe, M., Thompson, M. L., Adam, B.-L., Wright, G. L., Qu, Y., et al. (2003). A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics, 4, 449–463.CrossRefMATH
Metadata
Title
Mass Spectrometry Analysis Using MALDIquant
Authors
Sebastian Gibb
Korbinian Strimmer
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45809-0_6

Premium Partner