Skip to main content
Top

2021 | OriginalPaper | Chapter

Massively Parallel Lattice Boltzmann Simulations of Turbulent Flow over and Inside Porous Media

Authors : Konstantin Kutscher, Martin Geier, Manfred Krafczyk

Published in: Fundamentals of High Lift for Future Civil Aircraft

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Porous trailing edges have been proposed as a means to reduce acoustic emissions from aircraft wings. However, the influence of the porous material on the aerodynamic performance of the wing has to be investigated. In this work we report DNS/LES simulations of turbulent flow over a DLR-F16 wing profile at a Reynolds number of \(10^6\) using a cumulant lattice Boltzmann method. The cumulant LBM is implemented in the object-oriented framework VirtualFluids. Due to the requirement of resolving the boundary layer, the resulting simulation setups consist of more than two billion grid nodes and \(72.9\times 10^{9}\) degrees of freedom distributed on a locally refined three-dimensional grid requiring massively parallel simulations. We discuss modeling and scaling aspects of our approach and present computational results including experimental validation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Asinari, P.: Asymptotic analysis of multiple-relaxation-time lattice boltzmann schemes for mixture modeling. Comput. Math. Appl. 55(7), 1392–1407 (2008)MathSciNetMATH Asinari, P.: Asymptotic analysis of multiple-relaxation-time lattice boltzmann schemes for mixture modeling. Comput. Math. Appl. 55(7), 1392–1407 (2008)MathSciNetMATH
2.
go back to reference Cécora, R.D., Radespiel, R., Eisfeld, B., Probst, A.: Differential reynolds-stress modeling for aeronautics. AIAA J. 53(3), 739–755 (2014)CrossRef Cécora, R.D., Radespiel, R., Eisfeld, B., Probst, A.: Differential reynolds-stress modeling for aeronautics. AIAA J. 53(3), 739–755 (2014)CrossRef
3.
go back to reference De Rosis, A.: Non-orthogonal central moments relaxing to a discrete equilibrium: A d2q9 lattice boltzmann model. EPL (Eur. Lett.) 116(4), 44003 (2017)CrossRef De Rosis, A.: Non-orthogonal central moments relaxing to a discrete equilibrium: A d2q9 lattice boltzmann model. EPL (Eur. Lett.) 116(4), 44003 (2017)CrossRef
4.
go back to reference De Rosis, A.: Nonorthogonal central-moments-based lattice boltzmann scheme in three dimensions. Phys. Rev. E 95(1), 013310 (2017)MathSciNetCrossRef De Rosis, A.: Nonorthogonal central-moments-based lattice boltzmann scheme in three dimensions. Phys. Rev. E 95(1), 013310 (2017)MathSciNetCrossRef
5.
go back to reference Dellar, P.J.: Nonhydrodynamic modes and a priori construction of shallow water lattice boltzmann equations. Phys. Rev. E 65(3), 036309 (2002)CrossRef Dellar, P.J.: Nonhydrodynamic modes and a priori construction of shallow water lattice boltzmann equations. Phys. Rev. E 65(3), 036309 (2002)CrossRef
6.
go back to reference d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437–451 (2002)MathSciNetCrossRefMATH d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437–451 (2002)MathSciNetCrossRefMATH
7.
go back to reference Dubois, F., Février, T., Graille, B.: On the stability of a relative velocity lattice boltzmann scheme for compressible navier-stokes equations. Compt. R. Méc. 343(10–11), 599–610 (2015)CrossRef Dubois, F., Février, T., Graille, B.: On the stability of a relative velocity lattice boltzmann scheme for compressible navier-stokes equations. Compt. R. Méc. 343(10–11), 599–610 (2015)CrossRef
8.
go back to reference Dünweg, B., Schiller, U.D., Ladd, A.J.: Statistical mechanics of the fluctuating lattice boltzmann equation. Phys. Rev. E 76(3), 036704 (2007)MathSciNetCrossRef Dünweg, B., Schiller, U.D., Ladd, A.J.: Statistical mechanics of the fluctuating lattice boltzmann equation. Phys. Rev. E 76(3), 036704 (2007)MathSciNetCrossRef
9.
go back to reference Far, E.K., Geier, M., Krafczyk, M.: Simulation of rotating objects in fluids with the cumulant lattice boltzmann model on sliding meshes. Comput. Math. Appl. (2018) Far, E.K., Geier, M., Krafczyk, M.: Simulation of rotating objects in fluids with the cumulant lattice boltzmann model on sliding meshes. Comput. Math. Appl. (2018)
10.
go back to reference Fei, L., Luo, K.H., Li, Q.: Three-dimensional cascaded lattice boltzmann method: Improved implementation and consistent forcing scheme. Phys. Rev. E 97(5), 053309 (2018)MathSciNetCrossRef Fei, L., Luo, K.H., Li, Q.: Three-dimensional cascaded lattice boltzmann method: Improved implementation and consistent forcing scheme. Phys. Rev. E 97(5), 053309 (2018)MathSciNetCrossRef
12.
go back to reference Geier, M., Greiner, A., Korvink, J.: Galilean invariant viscosity term for an athermal integer lattice boltzmann automaton in three dimensions. In: NSTI Nanotechnology Conference and Trade Show, p. 255258 (2004) Geier, M., Greiner, A., Korvink, J.: Galilean invariant viscosity term for an athermal integer lattice boltzmann automaton in three dimensions. In: NSTI Nanotechnology Conference and Trade Show, p. 255258 (2004)
13.
go back to reference Geier, M., Greiner, A., Korvink, J.: Bubble functions for the lattice boltzmann method and their application to grid refinement. Eur. Phy. J. Spec. Top. 171(1), 173–179 (2009)CrossRef Geier, M., Greiner, A., Korvink, J.: Bubble functions for the lattice boltzmann method and their application to grid refinement. Eur. Phy. J. Spec. Top. 171(1), 173–179 (2009)CrossRef
14.
go back to reference Geier, M., Greiner, A., Korvink, J.: A factorized central moment lattice boltzmann method. Eur. Phy. J. Spec. Top. 171(1), 55–61 (2009)CrossRef Geier, M., Greiner, A., Korvink, J.: A factorized central moment lattice boltzmann method. Eur. Phy. J. Spec. Top. 171(1), 55–61 (2009)CrossRef
15.
go back to reference Geier, M., Greiner, A., Korvink, J.G.: Cascaded digital lattice boltzmann automata for high reynolds number flow. Phys. Rev. E 73(6), 066705 (2006)CrossRef Geier, M., Greiner, A., Korvink, J.G.: Cascaded digital lattice boltzmann automata for high reynolds number flow. Phys. Rev. E 73(6), 066705 (2006)CrossRef
16.
go back to reference Geier, M., Greiner, A., Korvink, J.G.: Properties of the cascaded lattice boltzmann automaton. Int. J. Mod. Phys. C 18(04), 455–462 (2007)CrossRefMATH Geier, M., Greiner, A., Korvink, J.G.: Properties of the cascaded lattice boltzmann automaton. Int. J. Mod. Phys. C 18(04), 455–462 (2007)CrossRefMATH
17.
go back to reference Geier, M., Pasquali, A., Schönherr, M.: Parametrization of the cumulant lattice boltzmann method for fourth order accurate diffusion part i: Derivation and validation 348, (2017) Geier, M., Pasquali, A., Schönherr, M.: Parametrization of the cumulant lattice boltzmann method for fourth order accurate diffusion part i: Derivation and validation 348, (2017)
18.
go back to reference Geier, M., Pasquali, A., Schönherr, M.: Parametrization of the cumulant lattice boltzmann method for fourth order accurate diffusion part ii: Application to flow around a sphere at drag crisis (2017) Geier, M., Pasquali, A., Schönherr, M.: Parametrization of the cumulant lattice boltzmann method for fourth order accurate diffusion part ii: Application to flow around a sphere at drag crisis (2017)
20.
go back to reference Geier, M., Schönherr, M., Pasquali, A., Krafczyk, M.: The cumulant lattice Boltzmann equation in three dimensions: Theory and validation. Comput. Math. Appl. 70(4), 507–547 (2015)MathSciNetMATH Geier, M., Schönherr, M., Pasquali, A., Krafczyk, M.: The cumulant lattice Boltzmann equation in three dimensions: Theory and validation. Comput. Math. Appl. 70(4), 507–547 (2015)MathSciNetMATH
22.
go back to reference Geller, S., Uphoff, S., Krafczyk, M.: Turbulent jet computations based on mrt and cascaded lattice boltzmann models. Comput. Math. Appl. 65(12), 1956–1966 (2013)MathSciNetMATH Geller, S., Uphoff, S., Krafczyk, M.: Turbulent jet computations based on mrt and cascaded lattice boltzmann models. Comput. Math. Appl. 65(12), 1956–1966 (2013)MathSciNetMATH
23.
go back to reference Gross, M., Adhikari, R., Cates, M., Varnik, F.: Thermal fluctuations in the lattice boltzmann method for nonideal fluids. Phys. Rev. E 82(5), 056714 (2010)CrossRef Gross, M., Adhikari, R., Cates, M., Varnik, F.: Thermal fluctuations in the lattice boltzmann method for nonideal fluids. Phys. Rev. E 82(5), 056714 (2010)CrossRef
24.
go back to reference Herr, M.: Design criteria for low-noise trailing-edges. In: 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), p. 3470 (2007) Herr, M.: Design criteria for low-noise trailing-edges. In: 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), p. 3470 (2007)
25.
go back to reference Herr, M., Rossignol, K.S., Delfs, J., Lippitz, N., Mößner, M.: Specification of porous materials for low-noise trailing-edge applications. In: 20th AIAA/CEAS Aeroacoustics Conference, p. 3041 (2014) Herr, M., Rossignol, K.S., Delfs, J., Lippitz, N., Mößner, M.: Specification of porous materials for low-noise trailing-edge applications. In: 20th AIAA/CEAS Aeroacoustics Conference, p. 3041 (2014)
26.
go back to reference Holman, D.M., Brionnaud, R.M., Modena, M.C., Sánchez, E.V.: Lattice boltzmann method contribution to the second high-lift prediction workshop. J. Aircr. 52(4), 1122–1135 (2015)CrossRef Holman, D.M., Brionnaud, R.M., Modena, M.C., Sánchez, E.V.: Lattice boltzmann method contribution to the second high-lift prediction workshop. J. Aircr. 52(4), 1122–1135 (2015)CrossRef
27.
go back to reference Hosseini, S.M., Vinuesa, R., Schlatter, P., Hanifi, A., Henningson, D.S.: Direct numerical simulation of the flow around a wing section at moderate reynolds number. Int. J. Heat Fluid Flow 61, 117–128 (2016)CrossRef Hosseini, S.M., Vinuesa, R., Schlatter, P., Hanifi, A., Henningson, D.S.: Direct numerical simulation of the flow around a wing section at moderate reynolds number. Int. J. Heat Fluid Flow 61, 117–128 (2016)CrossRef
28.
go back to reference Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139–166 (2002)CrossRefMATH Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139–166 (2002)CrossRefMATH
30.
go back to reference Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15, 301–314 (1972)CrossRef Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15, 301–314 (1972)CrossRef
31.
go back to reference Kaehler, G., Wagner, A.: Fluctuating ideal-gas lattice boltzmann method with fluctuation dissipation theorem for nonvanishing velocities. Phys. Rev. E 87(6), 063310 (2013)CrossRef Kaehler, G., Wagner, A.: Fluctuating ideal-gas lattice boltzmann method with fluctuation dissipation theorem for nonvanishing velocities. Phys. Rev. E 87(6), 063310 (2013)CrossRef
32.
go back to reference Kian Far, E., Geier, M., Kutscher, K., Krafczyk, M.: Distributed cumulant lattice boltzmann simulation of the dispersion process of ceramic agglomerates. J. Comput. Meth. Sci. Eng. 16(2), 231–252 (2016)MathSciNetMATH Kian Far, E., Geier, M., Kutscher, K., Krafczyk, M.: Distributed cumulant lattice boltzmann simulation of the dispersion process of ceramic agglomerates. J. Comput. Meth. Sci. Eng. 16(2), 231–252 (2016)MathSciNetMATH
33.
go back to reference Kian Far, E., Geier, M., Kutscher, K., Krafczyk, M.: Implicit large eddy simulation of flow in a micro-orifice with the cumulant lattice boltzmann method. Computation 5(2), 23 (2017)CrossRefMATH Kian Far, E., Geier, M., Kutscher, K., Krafczyk, M.: Implicit large eddy simulation of flow in a micro-orifice with the cumulant lattice boltzmann method. Computation 5(2), 23 (2017)CrossRefMATH
34.
go back to reference Krafczyk, M., Kucher, K., Wang, Y., Geier, M.: DNS/LES studies of turbulent flows based on the cumulant lattice boltzmann approach. In: High Performance Computing in Science and Engineering‘14, pp. 519–531. Springer (2015) Krafczyk, M., Kucher, K., Wang, Y., Geier, M.: DNS/LES studies of turbulent flows based on the cumulant lattice boltzmann approach. In: High Performance Computing in Science and Engineering‘14, pp. 519–531. Springer (2015)
35.
go back to reference Kumar, P., Kutscher, K., Mößner, M., Radespiel, R., Krafczyk, M., Geier, M.: Validation of a VRANS-model for turbulent flow over a porous flat plate by cumulant lattice Boltzmann DNS/LES and experiments. J. Porous Media 21(5), 471–482 (2018)CrossRef Kumar, P., Kutscher, K., Mößner, M., Radespiel, R., Krafczyk, M., Geier, M.: Validation of a VRANS-model for turbulent flow over a porous flat plate by cumulant lattice Boltzmann DNS/LES and experiments. J. Porous Media 21(5), 471–482 (2018)CrossRef
37.
go back to reference Lallemand, P., Luo, L.S.: Theory of the lattice boltzmann method: Dispersion, dissipation, isotropy, galilean invariance, and stability. Phys. Rev. E 61(6), 6546 (2000)MathSciNetCrossRef Lallemand, P., Luo, L.S.: Theory of the lattice boltzmann method: Dispersion, dissipation, isotropy, galilean invariance, and stability. Phys. Rev. E 61(6), 6546 (2000)MathSciNetCrossRef
38.
go back to reference Landa, T., Cécora, R.D., Radespiel, R.: Application of reynolds-stress-models on free shear layers. In: Symposium on AeroStructures, pp. 189–206. Springer (2015) Landa, T., Cécora, R.D., Radespiel, R.: Application of reynolds-stress-models on free shear layers. In: Symposium on AeroStructures, pp. 189–206. Springer (2015)
39.
go back to reference Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRef Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRef
40.
41.
go back to reference Qian, Y.H., d’Humieres, D., Lallemand, P.: Lattice BGK Models for Navier-Stokes Equation. Europhys. Lett. 17(6), 479–484 (1992)CrossRefMATH Qian, Y.H., d’Humieres, D., Lallemand, P.: Lattice BGK Models for Navier-Stokes Equation. Europhys. Lett. 17(6), 479–484 (1992)CrossRefMATH
42.
go back to reference Radespiel, R., Heinze, W.: Sfb 880: fundamentals of high lift for future commercial aircraft. CEAS Aeronaut. J. 5(3), 239–251 (2014)CrossRef Radespiel, R., Heinze, W.: Sfb 880: fundamentals of high lift for future commercial aircraft. CEAS Aeronaut. J. 5(3), 239–251 (2014)CrossRef
43.
go back to reference Schönherr, M., Kucher, K., Geier, M., Stiebler, M., Freudiger, S., Krafczyk, M.: Multi-thread implementations of the lattice boltzmann method on non-uniform grids for cpus and gpus. Comput. Math. Appl. 61(12), 3730–3743 (2011) Schönherr, M., Kucher, K., Geier, M., Stiebler, M., Freudiger, S., Krafczyk, M.: Multi-thread implementations of the lattice boltzmann method on non-uniform grids for cpus and gpus. Comput. Math. Appl. 61(12), 3730–3743 (2011)
44.
go back to reference Siebert, D., Hegele Jr., L., Philippi, P.: Lattice boltzmann equation linear stability analysis: Thermal and athermal models. Phys. Rev. E 77(2), 026707 (2008)CrossRef Siebert, D., Hegele Jr., L., Philippi, P.: Lattice boltzmann equation linear stability analysis: Thermal and athermal models. Phys. Rev. E 77(2), 026707 (2008)CrossRef
45.
go back to reference Vinuesa, R., Hosseini, S.M., Hanifi, A., Henningson, D.S., Schlatter, P.: Pressure-gradient turbulent boundary layers developing around a wing section. Flow Turbul. Combust. 99(3–4), 613–641 (2017)CrossRef Vinuesa, R., Hosseini, S.M., Hanifi, A., Henningson, D.S., Schlatter, P.: Pressure-gradient turbulent boundary layers developing around a wing section. Flow Turbul. Combust. 99(3–4), 613–641 (2017)CrossRef
Metadata
Title
Massively Parallel Lattice Boltzmann Simulations of Turbulent Flow over and Inside Porous Media
Authors
Konstantin Kutscher
Martin Geier
Manfred Krafczyk
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-52429-6_31

Premium Partners