Skip to main content
Top

2015 | OriginalPaper | Chapter

7. Material Jetting

Authors : Ian Gibson, David Rosen, Brent Stucker

Published in: Additive Manufacturing Technologies

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Printing technology has been extensively investigated, with the majority of that investigation historically based upon applications to the two-dimensional printing industry. Recently, however, it has spread to numerous new application areas, including electronics packaging, optics, and additive manufacturing. Some of these applications, in fact, have literally taken the technology into a new dimension. The employment of printing technologies in the creation of three-dimensional products has quickly become an extremely promising manufacturing practice, both widely studied and increasingly widely used.
This chapter will summarize the printing achievements made in the additive manufacturing industry and in academia. The development of printing as a process to fabricate 3D parts is summarized, followed by a survey of commercial polymer printing machines. The focus of this chapter is on material jetting (MJ) in which all of the part material is dispensed from a print head. This is in contrast to binder jetting, where binder or other additive is printed onto a powder bed which forms the bulk of the part. Binder jetting is the subject of Chap. 8. Some of the technical challenges of printing are introduced; material development for printing polymers, metals, and ceramics is investigated in some detail. Models of the material jetting process are introduced that relate pressure required to fluid properties. Additionally, a printing indicator expression is derived and used to analyze printing conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49–62 Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49–62
3.
go back to reference Wohlers T (2004) Wohlers report 2004. Wohlers Associates, Fort Collins Wohlers T (2004) Wohlers report 2004. Wohlers Associates, Fort Collins
4.
go back to reference Derby B, Reis N (2003) Inkjet printing of highly loaded particulate suspensions. MRS Bull 28(11):815–818CrossRef Derby B, Reis N (2003) Inkjet printing of highly loaded particulate suspensions. MRS Bull 28(11):815–818CrossRef
5.
go back to reference De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213CrossRef De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213CrossRef
7.
go back to reference Paton A, Kruse J (1995) Reduced nozzle viscous impedance. US Patent 5,463,416 Paton A, Kruse J (1995) Reduced nozzle viscous impedance. US Patent 5,463,416
8.
go back to reference Gao F, Sonin AA (1994) Precise deposition of molten microdrops: the physics of digital fabrication. Proc R Soc Lond A 444:533–554CrossRef Gao F, Sonin AA (1994) Precise deposition of molten microdrops: the physics of digital fabrication. Proc R Soc Lond A 444:533–554CrossRef
9.
go back to reference Reis N, Seerden KAM, Derby B, Halloran JW, Evans JRG (1999) Direct inkjet deposition of ceramic green bodies: II—jet behaviour and deposit formation. Mater Res Soc Symp Proc 542:147–152CrossRef Reis N, Seerden KAM, Derby B, Halloran JW, Evans JRG (1999) Direct inkjet deposition of ceramic green bodies: II—jet behaviour and deposit formation. Mater Res Soc Symp Proc 542:147–152CrossRef
10.
go back to reference Feng W, Fuh J, Wong Y (2006) Development of a drop-on-demand micro dispensing system. Mater Sci Forum 505–507:25–30CrossRef Feng W, Fuh J, Wong Y (2006) Development of a drop-on-demand micro dispensing system. Mater Sci Forum 505–507:25–30CrossRef
12.
go back to reference Leyden R, Hull W (1999) Method for selective deposition modeling. US Patent 5,855,836 Leyden R, Hull W (1999) Method for selective deposition modeling. US Patent 5,855,836
13.
go back to reference De Gans BJ, Kazancioglu E, Meyer W, Schubert US (2004) Ink-jet printing polymers and polymer libraries using micropipettes. Macromol Rapid Commun 25:292–296CrossRef De Gans BJ, Kazancioglu E, Meyer W, Schubert US (2004) Ink-jet printing polymers and polymer libraries using micropipettes. Macromol Rapid Commun 25:292–296CrossRef
14.
go back to reference Xu P, Ruatta S, Schmidt K, Doan V (2004) Phase change support material composition. US Patent 7,399,796 Xu P, Ruatta S, Schmidt K, Doan V (2004) Phase change support material composition. US Patent 7,399,796
15.
go back to reference Schmidt K (2005) Selective deposition modeling with curable phase change materials. US Patent 6,841,116 Schmidt K (2005) Selective deposition modeling with curable phase change materials. US Patent 6,841,116
16.
go back to reference Tay B, Edirisinghe MJ (2001) Investigation of some phenomena occurring during continuous ink-jet printing of ceramics. J Mater Res 16(2):373–384CrossRef Tay B, Edirisinghe MJ (2001) Investigation of some phenomena occurring during continuous ink-jet printing of ceramics. J Mater Res 16(2):373–384CrossRef
17.
go back to reference Ainsley C, Reis N, Derby B (2002) Freeform fabrication by controlled droplet deposition of powder filled melts. J Mater Sci 37:3155–3161CrossRef Ainsley C, Reis N, Derby B (2002) Freeform fabrication by controlled droplet deposition of powder filled melts. J Mater Sci 37:3155–3161CrossRef
18.
go back to reference Zhao X, Evans JRG, Edirisinghe MJ (2002) Direct ink-jet printing of vertical walls. J Am Ceram Soc 85(8):2113–2115CrossRef Zhao X, Evans JRG, Edirisinghe MJ (2002) Direct ink-jet printing of vertical walls. J Am Ceram Soc 85(8):2113–2115CrossRef
19.
go back to reference Wang T, Derby B (2005) Ink-jet printing and sintering of PZT. J Am Ceram Soc 88(8):2053–2058CrossRef Wang T, Derby B (2005) Ink-jet printing and sintering of PZT. J Am Ceram Soc 88(8):2053–2058CrossRef
20.
go back to reference Liu Q, Orme M (2001) High precision solder droplet printing technology and the state-of-the-art. J Mater Process Technol 115:271–283CrossRef Liu Q, Orme M (2001) High precision solder droplet printing technology and the state-of-the-art. J Mater Process Technol 115:271–283CrossRef
21.
go back to reference Priest JW, Smith C, DuBois P (1997) Liquid metal jetting for printing metal parts. In: Solid freeform fabrication symposium, Austin, TX, 11–13 Aug, pp 1–9 Priest JW, Smith C, DuBois P (1997) Liquid metal jetting for printing metal parts. In: Solid freeform fabrication symposium, Austin, TX, 11–13 Aug, pp 1–9
22.
go back to reference Orme M (1993) A novel technique of rapid solidification net-form material synthesis. J Mater Eng Perform 2:399–405CrossRef Orme M (1993) A novel technique of rapid solidification net-form material synthesis. J Mater Eng Perform 2:399–405CrossRef
23.
go back to reference Orme M, Huang C, Courter J (1996) Precision droplet-based manufacturing and material synthesis: fluid dynamics and thermal control issues. Atomization Sprays 6:305–329CrossRef Orme M, Huang C, Courter J (1996) Precision droplet-based manufacturing and material synthesis: fluid dynamics and thermal control issues. Atomization Sprays 6:305–329CrossRef
24.
go back to reference Yamaguchi K (2003) Generation of 3-dimensional microstructure by metal jet. Microsyst Technol 9:215–219CrossRef Yamaguchi K (2003) Generation of 3-dimensional microstructure by metal jet. Microsyst Technol 9:215–219CrossRef
25.
go back to reference Yamaguchi K, Sakai K, Yamanka T, Hirayama T (2000) Generation of three-dimensional micro structure using metal jet. Precis Eng 24:2–8CrossRef Yamaguchi K, Sakai K, Yamanka T, Hirayama T (2000) Generation of three-dimensional micro structure using metal jet. Precis Eng 24:2–8CrossRef
26.
go back to reference Liu Q, Orme M (2001) On precision droplet-based net-form manufacturing technology. Proc Inst Mech Eng B J Eng Manuf 215:1333–1355CrossRef Liu Q, Orme M (2001) On precision droplet-based net-form manufacturing technology. Proc Inst Mech Eng B J Eng Manuf 215:1333–1355CrossRef
27.
go back to reference Cao W, Miyamoto Y (2006) Freeform fabrication of aluminum parts by direct deposition of molten aluminum. J Mater Process Technol 173:209–212CrossRef Cao W, Miyamoto Y (2006) Freeform fabrication of aluminum parts by direct deposition of molten aluminum. J Mater Process Technol 173:209–212CrossRef
28.
go back to reference Shimoda T, Morii K, Seki S, Kiguchi H (2003) Inkjet printing of light-emitting polymer displays. MRS Bull 28:821–827CrossRef Shimoda T, Morii K, Seki S, Kiguchi H (2003) Inkjet printing of light-emitting polymer displays. MRS Bull 28:821–827CrossRef
29.
go back to reference Zhao X, Evans JRG, Edirisinghe MJ, Song JH (2001) Ceramic freeforming using an advanced multinozzle ink-jet printer. J Mater Synth Proces 9(6):319–327CrossRef Zhao X, Evans JRG, Edirisinghe MJ, Song JH (2001) Ceramic freeforming using an advanced multinozzle ink-jet printer. J Mater Synth Proces 9(6):319–327CrossRef
30.
go back to reference Furbank RJ, Morris JF (2004) An experimental study of particle effects on drop formation. Phys Fluids 16(5):1777–1790CrossRefMATH Furbank RJ, Morris JF (2004) An experimental study of particle effects on drop formation. Phys Fluids 16(5):1777–1790CrossRefMATH
31.
go back to reference Bechtel SE, Bogy DB, Talke FE (1981) Impact of a liquid drop against a flat surface. IBM J Res Dev 25(6):963–971CrossRef Bechtel SE, Bogy DB, Talke FE (1981) Impact of a liquid drop against a flat surface. IBM J Res Dev 25(6):963–971CrossRef
32.
go back to reference Pasandideh-Fard M, Qiao Y, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8(3):650–659CrossRef Pasandideh-Fard M, Qiao Y, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8(3):650–659CrossRef
33.
go back to reference Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10(6):1359–1374CrossRef Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10(6):1359–1374CrossRef
34.
go back to reference Bhola R, Chandra S (1999) Parameters controlling solidification of molten wax droplets falling on a solid surface. J Mater Sci 34:4883–4894CrossRef Bhola R, Chandra S (1999) Parameters controlling solidification of molten wax droplets falling on a solid surface. J Mater Sci 34:4883–4894CrossRef
35.
go back to reference Attinger D, Zhao Z, Poulikakos D (2000) An experimental study of molten microdroplet surface deposition and solidification: transient behavior and wetting angle dynamics. J Heat Transf 122:544–556CrossRef Attinger D, Zhao Z, Poulikakos D (2000) An experimental study of molten microdroplet surface deposition and solidification: transient behavior and wetting angle dynamics. J Heat Transf 122:544–556CrossRef
36.
go back to reference Zhou W, Loney D, Fedorov AG, Degertekin FL, Rosen DW (2013) What controls dynamics of droplet shape evolution upon impingement on a solid surface? AIChE J 59(8):3071–3082CrossRef Zhou W, Loney D, Fedorov AG, Degertekin FL, Rosen DW (2013) What controls dynamics of droplet shape evolution upon impingement on a solid surface? AIChE J 59(8):3071–3082CrossRef
37.
go back to reference Bussman M, Chandra S, Mostaghimi J (2000) Modeling the splash of a droplet impacting a solid surface. Phys Fluids 12(12):3121–3132CrossRefMATH Bussman M, Chandra S, Mostaghimi J (2000) Modeling the splash of a droplet impacting a solid surface. Phys Fluids 12(12):3121–3132CrossRefMATH
38.
go back to reference Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low Weber numbers. Phys Fluids 9(11):3172–3187CrossRef Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low Weber numbers. Phys Fluids 9(11):3172–3187CrossRef
39.
go back to reference Orme M, Huang C (1997) Phase change manipulation for droplet-based solid freeform fabrication. J Heat Transfer 119:818–823CrossRef Orme M, Huang C (1997) Phase change manipulation for droplet-based solid freeform fabrication. J Heat Transfer 119:818–823CrossRef
40.
go back to reference Sanders R, Forsyth L, Philbrook K (1996) 3-D Model maker. US Patent 5,506,706 Sanders R, Forsyth L, Philbrook K (1996) 3-D Model maker. US Patent 5,506,706
41.
go back to reference Thayer J, Almquist T, Merot C, Bedal B, Leyden R, Denison K, Stockwell J, Caruso A, Lockard M (2001) Selective deposition modeling system and method. US Patent 6,305,769 Thayer J, Almquist T, Merot C, Bedal B, Leyden R, Denison K, Stockwell J, Caruso A, Lockard M (2001) Selective deposition modeling system and method. US Patent 6,305,769
42.
go back to reference Gothait H (2005) System and method for three-dimensional model printing. US Patent 6,850,334 Gothait H (2005) System and method for three-dimensional model printing. US Patent 6,850,334
43.
go back to reference Gothait H (2001) Apparatus and method for three-dimensional model printing. US Patent 6,259,962 Gothait H (2001) Apparatus and method for three-dimensional model printing. US Patent 6,259,962
44.
go back to reference Bedal B, Bui V (2002) Method and apparatus for controlling the drop volume in a selective deposition modeling environment. US Patent 6,347,257 Bedal B, Bui V (2002) Method and apparatus for controlling the drop volume in a selective deposition modeling environment. US Patent 6,347,257
45.
go back to reference Tay B, Evans JRG, Edirisinghe MJ (2003) Solid freeform fabrication of ceramics. Int Mater Rev 48(6):341–370CrossRef Tay B, Evans JRG, Edirisinghe MJ (2003) Solid freeform fabrication of ceramics. Int Mater Rev 48(6):341–370CrossRef
47.
go back to reference Teng W, Edirisinghe MJ (1998) Development of continuous direct ink jet printing of ceramics. Br Ceram Trans 97(4):169–173 Teng W, Edirisinghe MJ (1998) Development of continuous direct ink jet printing of ceramics. Br Ceram Trans 97(4):169–173
48.
go back to reference Blazdell PF, Evans JRG, Edirisinghe MJ, Shaw P, Binstead M (1995) The computer aided manufacture of ceramics using multilayer jet printing. J Mater Sci Lett 54:1562–1565CrossRef Blazdell PF, Evans JRG, Edirisinghe MJ, Shaw P, Binstead M (1995) The computer aided manufacture of ceramics using multilayer jet printing. J Mater Sci Lett 54:1562–1565CrossRef
49.
go back to reference Blazdell PF (2003) Solid free-forming of ceramics using a continuous jet printer. J Mater Process Technol 137:49–54CrossRef Blazdell PF (2003) Solid free-forming of ceramics using a continuous jet printer. J Mater Process Technol 137:49–54CrossRef
50.
go back to reference Tseng AA, Lee MH, Zhao B (2001) Design and operation of a droplet deposition system for freeform fabrication of metal parts. J Eng Mater Technol 123:74–84CrossRef Tseng AA, Lee MH, Zhao B (2001) Design and operation of a droplet deposition system for freeform fabrication of metal parts. J Eng Mater Technol 123:74–84CrossRef
51.
go back to reference Basaran OA (2002) Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J 48(9):1842–1848CrossRef Basaran OA (2002) Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J 48(9):1842–1848CrossRef
52.
go back to reference Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126CrossRef Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126CrossRef
54.
go back to reference Percin G, Khuri-Yakub BT (2002) Piezoelectrically actuated flextensional micromachined ultrasound droplet ejectors. IEEE Trans Ultrason Ferroelectr Freq Control 49(6):756–766CrossRef Percin G, Khuri-Yakub BT (2002) Piezoelectrically actuated flextensional micromachined ultrasound droplet ejectors. IEEE Trans Ultrason Ferroelectr Freq Control 49(6):756–766CrossRef
55.
go back to reference Elrod SA, Hadimioglu B, Khuri-Yakub BT, Rawson EG, Richley E, Quate CF (1989) Nozzleless droplet formation with focused acoustic beams. J Appl Phys 65(9):3441–3447CrossRef Elrod SA, Hadimioglu B, Khuri-Yakub BT, Rawson EG, Richley E, Quate CF (1989) Nozzleless droplet formation with focused acoustic beams. J Appl Phys 65(9):3441–3447CrossRef
56.
go back to reference Meacham JM, Ejimofor C, Kumar S, Degertekin FL, Fedorov AG (2004) Micromachined ultrasonic droplet generator based on a liquid horn structure. Rev Sci Instrum 75(5):1347–1352CrossRef Meacham JM, Ejimofor C, Kumar S, Degertekin FL, Fedorov AG (2004) Micromachined ultrasonic droplet generator based on a liquid horn structure. Rev Sci Instrum 75(5):1347–1352CrossRef
57.
go back to reference Meacham JM, Varady M, Degertekin FL, Fedorov AG (2005) Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling. Phys Fluids 17:100605CrossRefMATH Meacham JM, Varady M, Degertekin FL, Fedorov AG (2005) Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling. Phys Fluids 17:100605CrossRefMATH
58.
go back to reference Margolin L (2006) Ultrasonic droplet generation jetting technology for additive manufacturing: an initial investigation. MS Thesis, Georgia Institute of Technology Margolin L (2006) Ultrasonic droplet generation jetting technology for additive manufacturing: an initial investigation. MS Thesis, Georgia Institute of Technology
59.
go back to reference Fukumoto H, Aizawa J, Nakagawa H, Narumiya H (2000) Printing with ink mist ejected by ultrasonic waves. J Imaging Sci Technol 44(5):398–405 Fukumoto H, Aizawa J, Nakagawa H, Narumiya H (2000) Printing with ink mist ejected by ultrasonic waves. J Imaging Sci Technol 44(5):398–405
60.
go back to reference Meacham JM, O’Rourke A, Yang Y, Fedorov AG, Degertekin FL, Rosen DW (2010) Experimental characterization of high viscosity droplet ejection. J Manuf Sci E-T ASME 132(3):030905CrossRef Meacham JM, O’Rourke A, Yang Y, Fedorov AG, Degertekin FL, Rosen DW (2010) Experimental characterization of high viscosity droplet ejection. J Manuf Sci E-T ASME 132(3):030905CrossRef
61.
go back to reference Sweet R (1964) High-frequency oscillography with electrostatically deflected ink jets. SEL-64-004, SELTR17221. Stanford Electronics Laboratories, Stanford, CA Sweet R (1964) High-frequency oscillography with electrostatically deflected ink jets. SEL-64-004, SELTR17221. Stanford Electronics Laboratories, Stanford, CA
62.
go back to reference Munson B, Young D, Okiishi T (1998) Fundamentals of fluid mechanics, 3rd edn. Wiley, New YorkMATH Munson B, Young D, Okiishi T (1998) Fundamentals of fluid mechanics, 3rd edn. Wiley, New YorkMATH
Metadata
Title
Material Jetting
Authors
Ian Gibson
David Rosen
Brent Stucker
Copyright Year
2015
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2113-3_7

Premium Partners