Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Mathematical Modeling of Surface-Mount Linear Permanent Magnet Synchronous Motor

Authors : Muhammad Ali Masood Cheema, John Edward Fletcher

Published in: Advanced Direct Thrust Force Control of Linear Permanent Magnet Synchronous Motor

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Precise mathematical modeling of the tubular surface-mount linear PMSM based on the physics of the machine is an essential requirement to formulate any type of control scheme for the machine. In this chapter, the dynamic model of tubular surface-mount linear PMSM in three-phase stationary abc-reference frame is formulated. In order to reduce mathematical complexity, the dynamic model of the surface-mount linear PMSM is developed under some standard assumptions which are often used in formulations of mathematical models for a vast variety of electric machines. In addition, the dynamic model of the surface-mount linear PMSM in three phase stationary abc-reference is transformed to two-axis reference frames by using appropriate transformations to further simplify the controller design process for the machine.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. Boldea, S. A. Nasar, Linear Electric Actuators and Generators (Cambridge University Press Inc., New York, 1997) I. Boldea, S. A. Nasar, Linear Electric Actuators and Generators (Cambridge University Press Inc., New York, 1997)
2.
go back to reference D. Gerling, Electrical Machines: Mathematical Fundamentals of Machine Topologies (Springer-Verlag, Berlin Heidelberg, 2015) D. Gerling, Electrical Machines: Mathematical Fundamentals of Machine Topologies (Springer-Verlag, Berlin Heidelberg, 2015)
3.
go back to reference P. S. Chandana Perara, Sensorless Control of Permanent Magnet Synchronous Motor Drives, Ph.D. Dissertation, Faculty of Engineering and Sciences, Alborg Univ., Denmark, 2002 P. S. Chandana Perara, Sensorless Control of Permanent Magnet Synchronous Motor Drives, Ph.D. Dissertation, Faculty of Engineering and Sciences, Alborg Univ., Denmark, 2002
4.
go back to reference D.W. Novotny, T.A. Lipo, Vector Control and Dynamics of AC Drives (Oxford University Press Inc, New York, 1996) D.W. Novotny, T.A. Lipo, Vector Control and Dynamics of AC Drives (Oxford University Press Inc, New York, 1996)
5.
go back to reference T.A. Lipo, Analysis of Synchronous Machines (CRC Press, Taylor & Francis Group, New York, 2012)CrossRef T.A. Lipo, Analysis of Synchronous Machines (CRC Press, Taylor & Francis Group, New York, 2012)CrossRef
6.
go back to reference C.M. Ong, Dynamic Simulation of Electric Machinery Using MATLAB/SIMULINK (Prentice Hall, PTR, Upper Saddle Rive, New Jersey, 1998) C.M. Ong, Dynamic Simulation of Electric Machinery Using MATLAB/SIMULINK (Prentice Hall, PTR, Upper Saddle Rive, New Jersey, 1998)
7.
go back to reference P. Krause, O. Wasynczuk, S. Sudhoff, S. Pekarek, Analysis of Electric Machinery and Drive Systems (Wiley, Hoboken, New Jersey, 2013)CrossRef P. Krause, O. Wasynczuk, S. Sudhoff, S. Pekarek, Analysis of Electric Machinery and Drive Systems (Wiley, Hoboken, New Jersey, 2013)CrossRef
8.
go back to reference T. M. Jahns, Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive. IEEE Trans. Ind. Appl. IA-23, 681–689 (1987)CrossRef T. M. Jahns, Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive. IEEE Trans. Ind. Appl. IA-23, 681–689 (1987)CrossRef
9.
go back to reference R.H. Park, Two-reaction theory of synchronous machines generalized method of analysis-part I. AIEE Trans. 48, 716–727 (1929) R.H. Park, Two-reaction theory of synchronous machines generalized method of analysis-part I. AIEE Trans. 48, 716–727 (1929)
10.
go back to reference H.C. Stanley, An analysis of induction motor. AIEE Trans. 57, 751–755 (1938) H.C. Stanley, An analysis of induction motor. AIEE Trans. 57, 751–755 (1938)
11.
go back to reference C.L. Fortescue, Method of symmetrical co-ordinates applied to the solution of polyphase networks. AIEE Trans. 37, 629–716 (1918) C.L. Fortescue, Method of symmetrical co-ordinates applied to the solution of polyphase networks. AIEE Trans. 37, 629–716 (1918)
12.
go back to reference W.V. Lyon, Transient conditions in electric machinery. AIEE Trans. 42, 159–179 (1923) W.V. Lyon, Transient conditions in electric machinery. AIEE Trans. 42, 159–179 (1923)
13.
go back to reference W.V. Lyon, Transient Analysis of Alternating Current Machinery (Wiley, New York, 1954) W.V. Lyon, Transient Analysis of Alternating Current Machinery (Wiley, New York, 1954)
14.
go back to reference M.S.W. Tam, N.C. Cheung, A high speed high precision linear drive system for manufacturing automation. Sixt. Annu. IEEE APEC 1, 440–444 (2001) M.S.W. Tam, N.C. Cheung, A high speed high precision linear drive system for manufacturing automation. Sixt. Annu. IEEE APEC 1, 440–444 (2001)
15.
go back to reference P. Famouri, Control of a linear permanent magnet brushless DC motor via exact linearization methods. IEEE Trans. Energy Convers. 7, 544–551 (1992)CrossRef P. Famouri, Control of a linear permanent magnet brushless DC motor via exact linearization methods. IEEE Trans. Energy Convers. 7, 544–551 (1992)CrossRef
16.
go back to reference F. Lin, C. Lin, C. Hong, Robust control of linear synchronous motor servodrive using disturbance observer and recurrent neural network compensator. IEE Electr. Power Appl. 147, 263–272 (2000)CrossRef F. Lin, C. Lin, C. Hong, Robust control of linear synchronous motor servodrive using disturbance observer and recurrent neural network compensator. IEE Electr. Power Appl. 147, 263–272 (2000)CrossRef
17.
go back to reference F. Lin, R. Wai, Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive. IEEE Trans. Fuzzy Syst. 9, 102–115 (2001)CrossRef F. Lin, R. Wai, Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive. IEEE Trans. Fuzzy Syst. 9, 102–115 (2001)CrossRef
18.
go back to reference R. Wai, W. Liu, Nonlinear decoupled control for linear induction motor servo-drive using the sliding-mode technique. IEE. Control. Theory Appl. 148, 217–231 (2001)CrossRef R. Wai, W. Liu, Nonlinear decoupled control for linear induction motor servo-drive using the sliding-mode technique. IEE. Control. Theory Appl. 148, 217–231 (2001)CrossRef
19.
go back to reference F. Lin, K. Shyu, C. Lin, Incremental motion control of linear synchronous motor. IEEE Trans. Aerosp. Electron. Syst. 38, 1011–1022 (2002)CrossRef F. Lin, K. Shyu, C. Lin, Incremental motion control of linear synchronous motor. IEEE Trans. Aerosp. Electron. Syst. 38, 1011–1022 (2002)CrossRef
20.
go back to reference T. Liu, Y. Lee, Y. Crang, Adaptive controller design for a linear motor control system. IEEE Trans. Aerosp. Electron. Syst. 40, 601–616 (2004)CrossRef T. Liu, Y. Lee, Y. Crang, Adaptive controller design for a linear motor control system. IEEE Trans. Aerosp. Electron. Syst. 40, 601–616 (2004)CrossRef
21.
go back to reference J. Vittek, J. Michalik, V. Vavrus, V. Horvath, Design of control system for forced dynamics control of an electric drive employing linear permanent magnet synchronous motor. International Conference on Industrial Electronics and Control Applications, ICIECA (2005), pp. 1–6 J. Vittek, J. Michalik, V. Vavrus, V. Horvath, Design of control system for forced dynamics control of an electric drive employing linear permanent magnet synchronous motor. International Conference on Industrial Electronics and Control Applications, ICIECA (2005), pp. 1–6
22.
go back to reference C. Sung, Y. Huang, Based on direct thrust control for linear synchronous motor systems. IEEE Ind. Electron. 56, 1629–1639 (2009)CrossRef C. Sung, Y. Huang, Based on direct thrust control for linear synchronous motor systems. IEEE Ind. Electron. 56, 1629–1639 (2009)CrossRef
23.
go back to reference A.Y.M. Abbas, J.E. Fletcher, Synthetic loading applied to linear permanent magnet synchronous machines. IET Renew. Power Gener. 4, 221–231 (2010)CrossRef A.Y.M. Abbas, J.E. Fletcher, Synthetic loading applied to linear permanent magnet synchronous machines. IET Renew. Power Gener. 4, 221–231 (2010)CrossRef
24.
go back to reference A.Y.M. Abbas, J.E. Fletcher, Implementation of sliding mode controller for linear synchronous motors based on direct thrust control theory. IET Control Theory Appl. 4, 326–338 (2010)CrossRef A.Y.M. Abbas, J.E. Fletcher, Implementation of sliding mode controller for linear synchronous motors based on direct thrust control theory. IET Control Theory Appl. 4, 326–338 (2010)CrossRef
25.
go back to reference J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, O.D. Ramírez-Cárdenas, Robust backstepping tracking controller for low-speed PMSM positioning system: Design, analysis, and implementation. IEEE Ind. Informat. 11, 1130–1141 (2015)CrossRef J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, O.D. Ramírez-Cárdenas, Robust backstepping tracking controller for low-speed PMSM positioning system: Design, analysis, and implementation. IEEE Ind. Informat. 11, 1130–1141 (2015)CrossRef
26.
go back to reference W. Zhao, S. Jiao, Q. Chen, D. Xu, J. Ji, Sensorless control of a linear permanent-magnet motor based on an improved disturbance observer. IEEE Ind. Electron. 65, 9291–9300 (2018)CrossRef W. Zhao, S. Jiao, Q. Chen, D. Xu, J. Ji, Sensorless control of a linear permanent-magnet motor based on an improved disturbance observer. IEEE Ind. Electron. 65, 9291–9300 (2018)CrossRef
27.
go back to reference W. Zhao, A. Yang, J. Ji, Q. Chen, J. Zhu, Modified flux linkage observer for sensorless direct thrust force control of linear vernier permanent magnet motor. IEEE Trans. Power Electron. 34, 7800–7811 (2019)CrossRef W. Zhao, A. Yang, J. Ji, Q. Chen, J. Zhu, Modified flux linkage observer for sensorless direct thrust force control of linear vernier permanent magnet motor. IEEE Trans. Power Electron. 34, 7800–7811 (2019)CrossRef
28.
go back to reference P.C. Sen, Principles of Electric Machines and Power Electronics (Wiley, USA, 1997) P.C. Sen, Principles of Electric Machines and Power Electronics (Wiley, USA, 1997)
29.
go back to reference T. M. Jahns, G. B. Kliman, T. W. Neumann, Interior permanent-magnet synchronous motors for adjustable-speed drives. IEEE Trans. Ind. Appl. IA-22, 738–747 (1986)CrossRef T. M. Jahns, G. B. Kliman, T. W. Neumann, Interior permanent-magnet synchronous motors for adjustable-speed drives. IEEE Trans. Ind. Appl. IA-22, 738–747 (1986)CrossRef
30.
go back to reference W.C. Duesterhoeft, M.W. Schulz, E. Clarke, Determination of instantaneous currents and voltages by means of alpha, beta, and zero components. AIEE Trans. 70, 1248–1255 (1951) W.C. Duesterhoeft, M.W. Schulz, E. Clarke, Determination of instantaneous currents and voltages by means of alpha, beta, and zero components. AIEE Trans. 70, 1248–1255 (1951)
31.
go back to reference G. Kron, Equivelent Circuits of Electric Machinery (Wiley, New York, 1951) G. Kron, Equivelent Circuits of Electric Machinery (Wiley, New York, 1951)
32.
go back to reference Y.S. Huang, C.C. Sung, Implementation of sliding mode controller for linear synchronous motors based on direct thrust control theory. IET Control Theory Appl. 4, 326–338 (2010)CrossRef Y.S. Huang, C.C. Sung, Implementation of sliding mode controller for linear synchronous motors based on direct thrust control theory. IET Control Theory Appl. 4, 326–338 (2010)CrossRef
Metadata
Title
Mathematical Modeling of Surface-Mount Linear Permanent Magnet Synchronous Motor
Authors
Muhammad Ali Masood Cheema
John Edward Fletcher
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-40325-6_2