Skip to main content
Top
Published in: Neural Computing and Applications 3/2019

21-08-2017 | Original Article

Mathematical modelling for pulsatile flow of Casson fluid along with magnetic nanoparticles in a stenosed artery under external magnetic field and body acceleration

Authors: S. Priyadharshini, R. Ponalagusamy

Published in: Neural Computing and Applications | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present paper, the magnetohydrodynamics effects on flow parameters of blood carrying magnetic nanoparticles flowing through a stenosed artery under the influence of periodic body acceleration are investigated. Blood is assumed to behave as a Casson fluid. The governing equations are nonlinear and solved numerically using finite difference schemes. The effects of stenotic height, yield stress, magnetic field, particle concentration and mass parameters on wall shear stress, flow resistance and velocity distribution are analysed. It is found that wall shear stress and flow resistance values are considerably enhanced when an external magnetic field is applied. The velocity values of fluid and particles are appreciably reduced when a magnetic field is applied on the model. It is significant to note that the presence of nanoparticles, magnetic field and yield stress tend to increase the plug core radius. Increased wall shear stress and flow resistance affects the circulation of blood in the human cardiovascular system. The results obtained from the study can be used in normalizing the values of the model parameters and hence can be used for medical applications. The presence of magnetic field helps to slow down the flow of fluid and magnetic particles associated with it. The magnetic particles of nanosize developed in recent days are biodegradable and used in biomedical applications. Biomagnetic principles and biomagnetic particles as drug carriers are used in cancer treatments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Young DF (1968) Effects of a time-dependent stenosis on flow through a tube. J Eng Ind Trans ASME 90:248–254CrossRef Young DF (1968) Effects of a time-dependent stenosis on flow through a tube. J Eng Ind Trans ASME 90:248–254CrossRef
2.
go back to reference Young DF, Tsai FY (1973) Flow characteristic in models of arterial stenosis-I. Steady flow. J Biomech 6:395–410CrossRef Young DF, Tsai FY (1973) Flow characteristic in models of arterial stenosis-I. Steady flow. J Biomech 6:395–410CrossRef
3.
go back to reference Ponalagusamy R (1986) Blood flow through Stenosed tube, Ph.D Thesis, IIT, Bombay Ponalagusamy R (1986) Blood flow through Stenosed tube, Ph.D Thesis, IIT, Bombay
4.
go back to reference Young DF (1979) Fluid mechanics of arterial stenosis. J Biomech Eng Trans ASME 101:157–175CrossRef Young DF (1979) Fluid mechanics of arterial stenosis. J Biomech Eng Trans ASME 101:157–175CrossRef
5.
go back to reference Caro CG (1981) Arterial fluid mechanics and atherogenesis, recent advances. Cardiovasc Dis 2(Supplement):6–11 Caro CG (1981) Arterial fluid mechanics and atherogenesis, recent advances. Cardiovasc Dis 2(Supplement):6–11
7.
go back to reference Kumar S, Kumar S, Kumar D (2009) Oscillatory MHD flow of blood through an artery with mild stenosis. IJE Trans A Basics 22:125–130MATH Kumar S, Kumar S, Kumar D (2009) Oscillatory MHD flow of blood through an artery with mild stenosis. IJE Trans A Basics 22:125–130MATH
8.
go back to reference Ramzan M, Bilal M, Chung JD (2016) Effects of MHD homogeneous-heterogeneous reactions on third grade fluid flow with Cattaneo–Christov heat flux. J Mol Liq 223:1284–1290CrossRef Ramzan M, Bilal M, Chung JD (2016) Effects of MHD homogeneous-heterogeneous reactions on third grade fluid flow with Cattaneo–Christov heat flux. J Mol Liq 223:1284–1290CrossRef
9.
go back to reference Ramzan M, Bilal M, Chung JD (2017) MHD stagnation point Cattaneo–Christov heat flux in Williamson fluid flow with homogeneous-heterogeneous reactions and convective boundary condition A numerical approach. J Mol Liq 225:856–862CrossRef Ramzan M, Bilal M, Chung JD (2017) MHD stagnation point Cattaneo–Christov heat flux in Williamson fluid flow with homogeneous-heterogeneous reactions and convective boundary condition A numerical approach. J Mol Liq 225:856–862CrossRef
10.
go back to reference Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47CrossRefMATH Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47CrossRefMATH
11.
go back to reference Rodkiewicz CM, Sinha P, Kennedy JS (1990) On the application of a constitutive equation for whole human blood. Trans ASME 112:198–206 Rodkiewicz CM, Sinha P, Kennedy JS (1990) On the application of a constitutive equation for whole human blood. Trans ASME 112:198–206
12.
go back to reference Scott Blair GW (1959) An equation of blood plasma flow and serum through glass capillaries. Nature 183:p613CrossRef Scott Blair GW (1959) An equation of blood plasma flow and serum through glass capillaries. Nature 183:p613CrossRef
13.
go back to reference Charm SE, Kurland GS (1965) Viscometry of human blood for shear rate of 0 100,000 sec\(^{-1}\). Nature 206:p617CrossRef Charm SE, Kurland GS (1965) Viscometry of human blood for shear rate of 0 100,000 sec\(^{-1}\). Nature 206:p617CrossRef
14.
go back to reference Merill EW, Benis AM, Gilliland ER, Sherwood TK, Salzman EW (1965) Pressure-flow relations of human blood in hollow fibers at low flow rates. J Appl Physiol 20:p954CrossRef Merill EW, Benis AM, Gilliland ER, Sherwood TK, Salzman EW (1965) Pressure-flow relations of human blood in hollow fibers at low flow rates. J Appl Physiol 20:p954CrossRef
15.
go back to reference Blair GWS, Spanner DC (1974) An introduction to biorheology. Elsevier Scientific, Oxford Blair GWS, Spanner DC (1974) An introduction to biorheology. Elsevier Scientific, Oxford
16.
go back to reference Siddiqui SU, Verma NK, Mishra S, Gupta RS (2009) Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis. Appl Math Comput 210:1–10MathSciNetMATH Siddiqui SU, Verma NK, Mishra S, Gupta RS (2009) Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis. Appl Math Comput 210:1–10MathSciNetMATH
17.
go back to reference Chaturani P, Ponnalagarsamy R (1986) Pulsatile flow of a Casson fluid through stenosed arteries with applications to blood flow. Biorheology 23:499–511CrossRef Chaturani P, Ponnalagarsamy R (1986) Pulsatile flow of a Casson fluid through stenosed arteries with applications to blood flow. Biorheology 23:499–511CrossRef
18.
go back to reference Bali R, Awasthi U (2012) A Casson fluid model for multiple stenosed artery in the presence of magnetic field. Appl Math 3(5):436–441MathSciNetCrossRef Bali R, Awasthi U (2012) A Casson fluid model for multiple stenosed artery in the presence of magnetic field. Appl Math 3(5):436–441MathSciNetCrossRef
19.
go back to reference Akbar NS (2015) Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: applications in crude oil refinement. J Magn Magn Mater 378:463–468CrossRef Akbar NS (2015) Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: applications in crude oil refinement. J Magn Magn Mater 378:463–468CrossRef
20.
go back to reference Ramzan M, Farooq M, Hayat T, Chung JD (2016) Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition. J Mol Liq 221:394–400CrossRef Ramzan M, Farooq M, Hayat T, Chung JD (2016) Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition. J Mol Liq 221:394–400CrossRef
21.
go back to reference Dash RK, Mehta KN (1996) Casson fluid in a pipe filled with a homogeneous porous medium. Int J Eng Sci 34(10):1145–1156CrossRefMATH Dash RK, Mehta KN (1996) Casson fluid in a pipe filled with a homogeneous porous medium. Int J Eng Sci 34(10):1145–1156CrossRefMATH
22.
go back to reference Chaturani P, Palanisamy V (1990) Casson fluid model for pulsatile flow of blood under periodic body acceleration. Biorheology 27(5):619–630CrossRef Chaturani P, Palanisamy V (1990) Casson fluid model for pulsatile flow of blood under periodic body acceleration. Biorheology 27(5):619–630CrossRef
23.
go back to reference Shyy W, narayanan R (1999) Fluid dynamics at interfaces. Cambridge University Press, CambridgeMATH Shyy W, narayanan R (1999) Fluid dynamics at interfaces. Cambridge University Press, CambridgeMATH
24.
go back to reference Shaylgin AN, Norina SB, Kondorsky EI (1983) Behaviour of erythrocytes in high gradient magnetic field. J Magn Magn Mater 31:555–556CrossRef Shaylgin AN, Norina SB, Kondorsky EI (1983) Behaviour of erythrocytes in high gradient magnetic field. J Magn Magn Mater 31:555–556CrossRef
25.
go back to reference Takeuchi T, Mizuno A, Yamagishi T, HigashiDate M (1995) Orientation of red blood cells in high magnetic field. J Magn Magn Mater 140–144:1462–1463 Takeuchi T, Mizuno A, Yamagishi T, HigashiDate M (1995) Orientation of red blood cells in high magnetic field. J Magn Magn Mater 140–144:1462–1463
26.
go back to reference Higashi T, Ashida N, Takeuchi T (1997) Orientation of blood cells in static magnetic field. Phys B 237–238:616–620CrossRef Higashi T, Ashida N, Takeuchi T (1997) Orientation of blood cells in static magnetic field. Phys B 237–238:616–620CrossRef
27.
go back to reference Haik Y, Pai V, Chen CJ (1999) Biomagnetic fluid dynamics at interfaces. Cambridge University Press, CambridgeMATH Haik Y, Pai V, Chen CJ (1999) Biomagnetic fluid dynamics at interfaces. Cambridge University Press, CambridgeMATH
28.
go back to reference Haik Y, Pai V, Chen CJ (2001) Apparent viscosity of human blood in a high static magnetic field. J Magn Magn Mater 225:180–186CrossRef Haik Y, Pai V, Chen CJ (2001) Apparent viscosity of human blood in a high static magnetic field. J Magn Magn Mater 225:180–186CrossRef
29.
go back to reference Sud VK, Sekhon GS (1989) Blood flow through the human arterial system in the presence of a steady magnetic field. Phys Med Biol 34:795–805CrossRef Sud VK, Sekhon GS (1989) Blood flow through the human arterial system in the presence of a steady magnetic field. Phys Med Biol 34:795–805CrossRef
30.
go back to reference Sharma S, Singh U, Katiyar VK (2015) Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube. J Magn Magn Mater 377:395–401CrossRef Sharma S, Singh U, Katiyar VK (2015) Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube. J Magn Magn Mater 377:395–401CrossRef
31.
go back to reference El-Shahed M (2003) Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration. Appl Math Comput 138:479–488MathSciNetMATH El-Shahed M (2003) Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration. Appl Math Comput 138:479–488MathSciNetMATH
33.
go back to reference Jiang Y, Reynolds C, Xiao C, Feng W, Zhou Z, Rodriguez W, Tyagi SC, Eaton JW, Saari JT, Kang YJ (2007) Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J Exp Med 204:657–666CrossRef Jiang Y, Reynolds C, Xiao C, Feng W, Zhou Z, Rodriguez W, Tyagi SC, Eaton JW, Saari JT, Kang YJ (2007) Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J Exp Med 204:657–666CrossRef
34.
go back to reference Ramzan M, Inam S, Shehzad SA (2016) Three dimensional boundary layer flow of a viscoelastic nanofluid with Soret and Dufour effects. Alex Eng J 55:311–319CrossRef Ramzan M, Inam S, Shehzad SA (2016) Three dimensional boundary layer flow of a viscoelastic nanofluid with Soret and Dufour effects. Alex Eng J 55:311–319CrossRef
35.
go back to reference Ramzan M (2016) Influence of Newtonian heating on three dimensional MHD flow of couple stress nanofluid with viscous dissipation and joule heating. J Mol Liq 223:1284–1290CrossRef Ramzan M (2016) Influence of Newtonian heating on three dimensional MHD flow of couple stress nanofluid with viscous dissipation and joule heating. J Mol Liq 223:1284–1290CrossRef
36.
go back to reference Ellahi R, Rahman SU, Nadeem S, Akbar NS (2014) Blood flow of nano fluid through an artery with composite stenosis and permeable walls. Appl Nanosci 4:919–926CrossRef Ellahi R, Rahman SU, Nadeem S, Akbar NS (2014) Blood flow of nano fluid through an artery with composite stenosis and permeable walls. Appl Nanosci 4:919–926CrossRef
37.
go back to reference Gentile F, Ferrari M, Decuzzi P (2007) The transport of nanoparticles in blood vessels, the effect of vessel permeability and blood rheology. Ann Biomed Eng 36:254–261CrossRef Gentile F, Ferrari M, Decuzzi P (2007) The transport of nanoparticles in blood vessels, the effect of vessel permeability and blood rheology. Ann Biomed Eng 36:254–261CrossRef
38.
go back to reference Sharma S, Katiyar VK, Singh U (2015) Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field. J Magn Magn Mater 379:102–107CrossRef Sharma S, Katiyar VK, Singh U (2015) Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field. J Magn Magn Mater 379:102–107CrossRef
39.
40.
go back to reference Aman S, Khan I, Ismail Z, Salleh MZ (2016) Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction. Neural Comput Appl. doi:10.1007/s00521-016-2688-7 Aman S, Khan I, Ismail Z, Salleh MZ (2016) Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction. Neural Comput Appl. doi:10.​1007/​s00521-016-2688-7
41.
go back to reference Furlani EP, Furlani EP (2007) A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J Magn Magn Mater 312:187–193CrossRef Furlani EP, Furlani EP (2007) A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J Magn Magn Mater 312:187–193CrossRef
42.
go back to reference Womersley JR (1955) Oscillatory motion of a viscous liquid in a thin-walled elastic tube-I: the linear approximation for long waves. Phil Mag 46:199–219MathSciNetCrossRefMATH Womersley JR (1955) Oscillatory motion of a viscous liquid in a thin-walled elastic tube-I: the linear approximation for long waves. Phil Mag 46:199–219MathSciNetCrossRefMATH
43.
go back to reference Chaturani P, Palanisamy V (1990) Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration. Biorheology 27(5):747–758CrossRef Chaturani P, Palanisamy V (1990) Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration. Biorheology 27(5):747–758CrossRef
44.
go back to reference Chaturani P, Palanisamy V (1991) Pulsatile flow of blood with periodic body acceleration. Int J Eng Sci 29(1):113–121CrossRefMATH Chaturani P, Palanisamy V (1991) Pulsatile flow of blood with periodic body acceleration. Int J Eng Sci 29(1):113–121CrossRefMATH
45.
go back to reference Akbarzadeh P (2016) Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model. Comput Meth Prog Biomedicine 126:3–19CrossRef Akbarzadeh P (2016) Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model. Comput Meth Prog Biomedicine 126:3–19CrossRef
46.
go back to reference Srivastava VP, Rastogi R (2010) Blood flow through a stenosed catheterized artery: effects of hematocrit and stenosis shape. Comput Math Appl 59:1377–1385MathSciNetCrossRefMATH Srivastava VP, Rastogi R (2010) Blood flow through a stenosed catheterized artery: effects of hematocrit and stenosis shape. Comput Math Appl 59:1377–1385MathSciNetCrossRefMATH
47.
go back to reference Nacev A, Beni C, Bruno O, Shapiro B (2011) The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323:651–668CrossRef Nacev A, Beni C, Bruno O, Shapiro B (2011) The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323:651–668CrossRef
48.
go back to reference Mekheimer KS, Kot MAEI (2008) Influence of magnetic field and hall currents on blood flow through a stenotic artery. Appl Math Mech Engl Ed 29(8):1093–1104MathSciNetCrossRefMATH Mekheimer KS, Kot MAEI (2008) Influence of magnetic field and hall currents on blood flow through a stenotic artery. Appl Math Mech Engl Ed 29(8):1093–1104MathSciNetCrossRefMATH
49.
go back to reference Shaw S, Murthy PVSN, Pradhan SC (2010) The effect of body acceleration on two dimensional flow of Casson fluid through an artery with asymmetric stenosis. Open Transport Phenom J 2:55–68CrossRef Shaw S, Murthy PVSN, Pradhan SC (2010) The effect of body acceleration on two dimensional flow of Casson fluid through an artery with asymmetric stenosis. Open Transport Phenom J 2:55–68CrossRef
Metadata
Title
Mathematical modelling for pulsatile flow of Casson fluid along with magnetic nanoparticles in a stenosed artery under external magnetic field and body acceleration
Authors
S. Priyadharshini
R. Ponalagusamy
Publication date
21-08-2017
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 3/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3111-8

Other articles of this Issue 3/2019

Neural Computing and Applications 3/2019 Go to the issue

Premium Partner