Skip to main content
Top
Published in: Measurement Techniques 4/2018

03-08-2018 | PHYSICOCHEMICAL MEASUREMENTS

Measurement of Carbon-Nanotube Adsorption of Energy-Carrier Gases for Alternative Energy Systems

Authors: A. V. Shkolin, A. A. Fomkin

Published in: Measurement Techniques | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We have developed a measurement technique and describe a test bench for experimental gravimetric study of the adsorption of energy-carrier gases at pressures of up to 0.15 MPa and temperatures of 77–670 K on CNT/C7H8 supramolecular structures based on carbon nanotubes and toluene molecules. We show that at pressure 0.1 MPa and temperatures of 273 and 178 K adsorption of methane is approximately 1.5 times higher on CNT/C7H8 structures than on pure carbon nanotubes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. Men’shchikov, A. Fomkin, A. Y. Tsivadze, et al., “Adsorption accumulation of natural gas based on microporous carbon adsorbents of different origin,” Adsorption, 23, 327–339 (2017).CrossRef I. Men’shchikov, A. Fomkin, A. Y. Tsivadze, et al., “Adsorption accumulation of natural gas based on microporous carbon adsorbents of different origin,” Adsorption, 23, 327–339 (2017).CrossRef
2.
go back to reference M. M. Dubinin, Adsorption and Porosity, Izd. VAKhZ, Moscow (1972). M. M. Dubinin, Adsorption and Porosity, Izd. VAKhZ, Moscow (1972).
3.
go back to reference T. A. Makal, J.-R. Li, W. Lu, and H.-C. Zhou, “Methane storage in advanced porous materials,” Chem. Soc. Rev., 41, 7761–7779 (2012).CrossRef T. A. Makal, J.-R. Li, W. Lu, and H.-C. Zhou, “Methane storage in advanced porous materials,” Chem. Soc. Rev., 41, 7761–7779 (2012).CrossRef
4.
go back to reference S. J. Mahdizadeh and S. F. Tayyari, “Influence of temperature, pressure, nanotube’s diameter and intertube distance on methane adsorption in homogeneous armchair open-ended SWCNT triangular arrays,” Theor. Chem. Acc., 128, 231–240 (2011).CrossRef S. J. Mahdizadeh and S. F. Tayyari, “Influence of temperature, pressure, nanotube’s diameter and intertube distance on methane adsorption in homogeneous armchair open-ended SWCNT triangular arrays,” Theor. Chem. Acc., 128, 231–240 (2011).CrossRef
5.
go back to reference A. V. Shkolin, A. A. Fomkin, E. M. Strizhenov, and A. L. Pulin, “Adsorption of methane on model adsorbents formed from single-wall carbon nanotubes,” Fizikokhim. Pov. Zash. Mater., 50, 279–286 (2014). A. V. Shkolin, A. A. Fomkin, E. M. Strizhenov, and A. L. Pulin, “Adsorption of methane on model adsorbents formed from single-wall carbon nanotubes,” Fizikokhim. Pov. Zash. Mater., 50, 279–286 (2014).
6.
go back to reference A. Herbst and P. Harting, “Thermodynamic description of excess isotherms in high-pressure adsorption of methane, argon and nitrogen,” Adsorption, 8, 111–123 (2002).CrossRef A. Herbst and P. Harting, “Thermodynamic description of excess isotherms in high-pressure adsorption of methane, argon and nitrogen,” Adsorption, 8, 111–123 (2002).CrossRef
7.
go back to reference F. Dreisbach, H. Lösch, and P. Harting, “Highest pressure adsorption equilibria data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume,” Adsorption, 8, 95–109 (2002).CrossRef F. Dreisbach, H. Lösch, and P. Harting, “Highest pressure adsorption equilibria data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume,” Adsorption, 8, 95–109 (2002).CrossRef
8.
go back to reference A. A. Fomkin and V. V. Serpinskii, “Study of adsorption of chlorotrifluoromethane on zeolite NaX in a broad range of pressures and temperatures,” Izv. AN SSSR. Ser. Khim., No. 9, 2108–2110 (1974). A. A. Fomkin and V. V. Serpinskii, “Study of adsorption of chlorotrifluoromethane on zeolite NaX in a broad range of pressures and temperatures,” Izv. AN SSSR. Ser. Khim., No. 9, 2108–2110 (1974).
9.
go back to reference A. V. Shkolin and A. A. Fomkin, “Self-organization of supramolecular microporous structures based on carbon nanotubes and benzene,” Kolloid. Zh., 78, 800–807 (2016). A. V. Shkolin and A. A. Fomkin, “Self-organization of supramolecular microporous structures based on carbon nanotubes and benzene,” Kolloid. Zh., 78, 800–807 (2016).
10.
go back to reference A. V. Shkolin and A. A. Fomkin, “Supramolecular microporous structures based on carbon nanotubes and coordinating cumene (C9H12) molecules,” Kolloid. Zh., 79, No. 5, 137–143 (2017). A. V. Shkolin and A. A. Fomkin, “Supramolecular microporous structures based on carbon nanotubes and coordinating cumene (C9H12) molecules,” Kolloid. Zh., 79, No. 5, 137–143 (2017).
11.
go back to reference N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases [Russian translation], Nauka, Moscow (1972). N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases [Russian translation], Nauka, Moscow (1972).
12.
go back to reference A. V. Kiselev and V. P. Dreving, Experimental Methods in Adsorption and Molecular Chromatography, Izd. MGU, Moscow (1973). A. V. Kiselev and V. P. Dreving, Experimental Methods in Adsorption and Molecular Chromatography, Izd. MGU, Moscow (1973).
13.
go back to reference P. Malbrunot, D. Vidal, J. Vermesse, et al., “Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure,” Langmuir, No. 13, 539–544 (1997). P. Malbrunot, D. Vidal, J. Vermesse, et al., “Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure,” Langmuir, No. 13, 539–544 (1997).
14.
go back to reference GOST R 54500.3–2011/ISO/MEK 98-3:2008, Guide to the Expression of Uncertainty in Measurement. Pt. 3. Uncertainty in Measurement. GOST R 54500.3–2011/ISO/MEK 98-3:2008, Guide to the Expression of Uncertainty in Measurement. Pt. 3. Uncertainty in Measurement.
15.
go back to reference A. V. Shkolin and A. A. Fomkin, “Deformation of AUK microporous carbon adsorbent induced by methane adsorption,” Kolloid. Zh., 71, No. 1, 116–121 (2009). A. V. Shkolin and A. A. Fomkin, “Deformation of AUK microporous carbon adsorbent induced by methane adsorption,” Kolloid. Zh., 71, No. 1, 116–121 (2009).
16.
go back to reference A. A. Fomkin, “Adsorption of gases, vapors and liquids by microporous adsorbents,” Adsorption, 11, No. 3–4, 425–436 (2005). A. A. Fomkin, “Adsorption of gases, vapors and liquids by microporous adsorbents,” Adsorption, 11, No. 3–4, 425–436 (2005).
Metadata
Title
Measurement of Carbon-Nanotube Adsorption of Energy-Carrier Gases for Alternative Energy Systems
Authors
A. V. Shkolin
A. A. Fomkin
Publication date
03-08-2018
Publisher
Springer US
Published in
Measurement Techniques / Issue 4/2018
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-018-1440-3

Other articles of this Issue 4/2018

Measurement Techniques 4/2018 Go to the issue