Skip to main content
Erschienen in: Measurement Techniques 4/2018

03.08.2018 | PHYSICOCHEMICAL MEASUREMENTS

Measurement of Carbon-Nanotube Adsorption of Energy-Carrier Gases for Alternative Energy Systems

verfasst von: A. V. Shkolin, A. A. Fomkin

Erschienen in: Measurement Techniques | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have developed a measurement technique and describe a test bench for experimental gravimetric study of the adsorption of energy-carrier gases at pressures of up to 0.15 MPa and temperatures of 77–670 K on CNT/C7H8 supramolecular structures based on carbon nanotubes and toluene molecules. We show that at pressure 0.1 MPa and temperatures of 273 and 178 K adsorption of methane is approximately 1.5 times higher on CNT/C7H8 structures than on pure carbon nanotubes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. Men’shchikov, A. Fomkin, A. Y. Tsivadze, et al., “Adsorption accumulation of natural gas based on microporous carbon adsorbents of different origin,” Adsorption, 23, 327–339 (2017).CrossRef I. Men’shchikov, A. Fomkin, A. Y. Tsivadze, et al., “Adsorption accumulation of natural gas based on microporous carbon adsorbents of different origin,” Adsorption, 23, 327–339 (2017).CrossRef
2.
Zurück zum Zitat M. M. Dubinin, Adsorption and Porosity, Izd. VAKhZ, Moscow (1972). M. M. Dubinin, Adsorption and Porosity, Izd. VAKhZ, Moscow (1972).
3.
Zurück zum Zitat T. A. Makal, J.-R. Li, W. Lu, and H.-C. Zhou, “Methane storage in advanced porous materials,” Chem. Soc. Rev., 41, 7761–7779 (2012).CrossRef T. A. Makal, J.-R. Li, W. Lu, and H.-C. Zhou, “Methane storage in advanced porous materials,” Chem. Soc. Rev., 41, 7761–7779 (2012).CrossRef
4.
Zurück zum Zitat S. J. Mahdizadeh and S. F. Tayyari, “Influence of temperature, pressure, nanotube’s diameter and intertube distance on methane adsorption in homogeneous armchair open-ended SWCNT triangular arrays,” Theor. Chem. Acc., 128, 231–240 (2011).CrossRef S. J. Mahdizadeh and S. F. Tayyari, “Influence of temperature, pressure, nanotube’s diameter and intertube distance on methane adsorption in homogeneous armchair open-ended SWCNT triangular arrays,” Theor. Chem. Acc., 128, 231–240 (2011).CrossRef
5.
Zurück zum Zitat A. V. Shkolin, A. A. Fomkin, E. M. Strizhenov, and A. L. Pulin, “Adsorption of methane on model adsorbents formed from single-wall carbon nanotubes,” Fizikokhim. Pov. Zash. Mater., 50, 279–286 (2014). A. V. Shkolin, A. A. Fomkin, E. M. Strizhenov, and A. L. Pulin, “Adsorption of methane on model adsorbents formed from single-wall carbon nanotubes,” Fizikokhim. Pov. Zash. Mater., 50, 279–286 (2014).
6.
Zurück zum Zitat A. Herbst and P. Harting, “Thermodynamic description of excess isotherms in high-pressure adsorption of methane, argon and nitrogen,” Adsorption, 8, 111–123 (2002).CrossRef A. Herbst and P. Harting, “Thermodynamic description of excess isotherms in high-pressure adsorption of methane, argon and nitrogen,” Adsorption, 8, 111–123 (2002).CrossRef
7.
Zurück zum Zitat F. Dreisbach, H. Lösch, and P. Harting, “Highest pressure adsorption equilibria data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume,” Adsorption, 8, 95–109 (2002).CrossRef F. Dreisbach, H. Lösch, and P. Harting, “Highest pressure adsorption equilibria data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume,” Adsorption, 8, 95–109 (2002).CrossRef
8.
Zurück zum Zitat A. A. Fomkin and V. V. Serpinskii, “Study of adsorption of chlorotrifluoromethane on zeolite NaX in a broad range of pressures and temperatures,” Izv. AN SSSR. Ser. Khim., No. 9, 2108–2110 (1974). A. A. Fomkin and V. V. Serpinskii, “Study of adsorption of chlorotrifluoromethane on zeolite NaX in a broad range of pressures and temperatures,” Izv. AN SSSR. Ser. Khim., No. 9, 2108–2110 (1974).
9.
Zurück zum Zitat A. V. Shkolin and A. A. Fomkin, “Self-organization of supramolecular microporous structures based on carbon nanotubes and benzene,” Kolloid. Zh., 78, 800–807 (2016). A. V. Shkolin and A. A. Fomkin, “Self-organization of supramolecular microporous structures based on carbon nanotubes and benzene,” Kolloid. Zh., 78, 800–807 (2016).
10.
Zurück zum Zitat A. V. Shkolin and A. A. Fomkin, “Supramolecular microporous structures based on carbon nanotubes and coordinating cumene (C9H12) molecules,” Kolloid. Zh., 79, No. 5, 137–143 (2017). A. V. Shkolin and A. A. Fomkin, “Supramolecular microporous structures based on carbon nanotubes and coordinating cumene (C9H12) molecules,” Kolloid. Zh., 79, No. 5, 137–143 (2017).
11.
Zurück zum Zitat N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases [Russian translation], Nauka, Moscow (1972). N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases [Russian translation], Nauka, Moscow (1972).
12.
Zurück zum Zitat A. V. Kiselev and V. P. Dreving, Experimental Methods in Adsorption and Molecular Chromatography, Izd. MGU, Moscow (1973). A. V. Kiselev and V. P. Dreving, Experimental Methods in Adsorption and Molecular Chromatography, Izd. MGU, Moscow (1973).
13.
Zurück zum Zitat P. Malbrunot, D. Vidal, J. Vermesse, et al., “Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure,” Langmuir, No. 13, 539–544 (1997). P. Malbrunot, D. Vidal, J. Vermesse, et al., “Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure,” Langmuir, No. 13, 539–544 (1997).
14.
Zurück zum Zitat GOST R 54500.3–2011/ISO/MEK 98-3:2008, Guide to the Expression of Uncertainty in Measurement. Pt. 3. Uncertainty in Measurement. GOST R 54500.3–2011/ISO/MEK 98-3:2008, Guide to the Expression of Uncertainty in Measurement. Pt. 3. Uncertainty in Measurement.
15.
Zurück zum Zitat A. V. Shkolin and A. A. Fomkin, “Deformation of AUK microporous carbon adsorbent induced by methane adsorption,” Kolloid. Zh., 71, No. 1, 116–121 (2009). A. V. Shkolin and A. A. Fomkin, “Deformation of AUK microporous carbon adsorbent induced by methane adsorption,” Kolloid. Zh., 71, No. 1, 116–121 (2009).
16.
Zurück zum Zitat A. A. Fomkin, “Adsorption of gases, vapors and liquids by microporous adsorbents,” Adsorption, 11, No. 3–4, 425–436 (2005). A. A. Fomkin, “Adsorption of gases, vapors and liquids by microporous adsorbents,” Adsorption, 11, No. 3–4, 425–436 (2005).
Metadaten
Titel
Measurement of Carbon-Nanotube Adsorption of Energy-Carrier Gases for Alternative Energy Systems
verfasst von
A. V. Shkolin
A. A. Fomkin
Publikationsdatum
03.08.2018
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 4/2018
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-018-1440-3

Weitere Artikel der Ausgabe 4/2018

Measurement Techniques 4/2018 Zur Ausgabe