Skip to main content
Top
Published in: Journal of Materials Science 19/2018

13-06-2018 | Mechanochemical Synthesis

Mechanical activation of pre-alloyed NiTi2 and elemental Ni for the synthesis of NiTi alloys

Authors: X. Zhao, F. Neves, J. B. Correia, K. Liu, F. M. Braz Fernades, V. Koledov, S. von Gratowski, S. Xu, J. Huang

Published in: Journal of Materials Science | Issue 19/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work reports on an efficient powder metallurgy method for the synthesis of NiTi alloys, involving mechanical activation of pre-alloyed NiTi2 and elemental Ni powders (NiTi2–Ni) followed by a press-and-sinter step. The idea is to take advantage of the brittle nature of NiTi2 to promote a better efficiency of the mechanical activation process. The conventional mechanical activation route using elemental Ti and Ni powders (Ti–Ni) was also used for comparative purposes. Starting with (NiTi2–Ni) powder mixtures resulted in the formation of a predominant amorphous structure after mechanical activation at 300 rpm for 2 h. A sintered specimen consisting mainly of NiTi phase was obtained after vacuum sintering at 1050 °C for 0.5 h. The produced NiTi phase exhibited the martensitic transformation behavior. Using elemental Ti powders instead of pre-alloyed NiTi2 powders, the structural homogenization of the synthesized NiTi alloys was delayed. Performing the mechanical activation at 300 rpm for the (Ti–Ni) powder mixtures gave rise to the formation of composite particles consisting in dense areas of alternate fine layers of Ni and Ti. However, no significant structural modification was observed even after 16 h of mechanical activation. Only after vacuum sintering at 1050 °C for 6 h, the NiTi phase was observed to be the predominant phase. The higher reactivity of the mechanically activated (NiTi2–Ni) powder particles can explain the different sintering behavior of those powders compared with the mechanically activated (Ti–Ni) powders. It is demonstrated that this innovative approach allows an effective time reduction in the mechanical activation and of the vacuum sintering step.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu SK, Lin HC, Chen CC (1999) A study on the machinability of a Ti49.6Ni50.4 shape memory alloy. Mater Lett 40:27–32CrossRef Wu SK, Lin HC, Chen CC (1999) A study on the machinability of a Ti49.6Ni50.4 shape memory alloy. Mater Lett 40:27–32CrossRef
2.
go back to reference Grummon DS, Shaw JA, Gremillet A (2003) Low-density open-cell foams in the NiTi system. Appl Phys Lett 82:2727–2729CrossRef Grummon DS, Shaw JA, Gremillet A (2003) Low-density open-cell foams in the NiTi system. Appl Phys Lett 82:2727–2729CrossRef
3.
go back to reference Biswas A (2005) Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure. Acta Mater 53:1415–1425CrossRef Biswas A (2005) Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure. Acta Mater 53:1415–1425CrossRef
4.
go back to reference Yuan B, Zhang XP, Chung CY, Zeng MQ, Zhu M (2006) A comparative study of the porous TiNi shape memory alloys fabricated by three different processes. Metall Mater Trans A 37:755–761CrossRef Yuan B, Zhang XP, Chung CY, Zeng MQ, Zhu M (2006) A comparative study of the porous TiNi shape memory alloys fabricated by three different processes. Metall Mater Trans A 37:755–761CrossRef
5.
go back to reference Chen G, Cao P, Edmonds N (2013) Porous NiTi alloys produced by press-and-sinter from Ni/Ti and Ni/TiH2 mixtures. Mat Sci Eng A 582:117–125CrossRef Chen G, Cao P, Edmonds N (2013) Porous NiTi alloys produced by press-and-sinter from Ni/Ti and Ni/TiH2 mixtures. Mat Sci Eng A 582:117–125CrossRef
6.
go back to reference Xu JL, Bao LZ, Liu AH, Jin XF, Luo JM, Zhong ZC, Zheng YF (2015) Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J Alloys Compd 645:137–142CrossRef Xu JL, Bao LZ, Liu AH, Jin XF, Luo JM, Zhong ZC, Zheng YF (2015) Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J Alloys Compd 645:137–142CrossRef
7.
go back to reference Zaki HHM, Abdullah J (2014) Comparison studies on solid state diffusion of Ni–Ti and Ni–TiH2 under CaH2 reducing environment. Mater Lett 121:36–39CrossRef Zaki HHM, Abdullah J (2014) Comparison studies on solid state diffusion of Ni–Ti and Ni–TiH2 under CaH2 reducing environment. Mater Lett 121:36–39CrossRef
8.
go back to reference Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge
9.
go back to reference Nishida M, Wayman CM, Honma T (1986) Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall Trans A 17:1505–1515CrossRef Nishida M, Wayman CM, Honma T (1986) Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall Trans A 17:1505–1515CrossRef
10.
go back to reference Chang LC, Read TA (1951) Plastic deformation and diffusionless phase changes in metals—the gold–cadmium beta phase. JOM 3:47–52CrossRef Chang LC, Read TA (1951) Plastic deformation and diffusionless phase changes in metals—the gold–cadmium beta phase. JOM 3:47–52CrossRef
11.
go back to reference Duerig TW (1994) Present and future applications of shape memory and superelastic materials. In: 1st International conference on shape memory and superelastic technologies, Pacific Grove, California, USA, 7–10 March, pp 31–42 Duerig TW (1994) Present and future applications of shape memory and superelastic materials. In: 1st International conference on shape memory and superelastic technologies, Pacific Grove, California, USA, 7–10 March, pp 31–42
12.
go back to reference Bertheville B, Bidaux JE (2005) Enhanced powder sintering of near-equiatomic NiTi shape-memory alloys using Ca reductant vapor. J Alloys Compd 387:211–216CrossRef Bertheville B, Bidaux JE (2005) Enhanced powder sintering of near-equiatomic NiTi shape-memory alloys using Ca reductant vapor. J Alloys Compd 387:211–216CrossRef
13.
go back to reference Bertheville B (2006) PM processing of single-phase NiTi shape memory alloys by VPCR process. Mater Trans 47:698–703CrossRef Bertheville B (2006) PM processing of single-phase NiTi shape memory alloys by VPCR process. Mater Trans 47:698–703CrossRef
14.
go back to reference Zaki HHM, Abdullah J (2016) The role of CaH2 in preventing oxidation for the production of single-phase NiTi alloy in solid state. J Alloys Compd 655:364–371CrossRef Zaki HHM, Abdullah J (2016) The role of CaH2 in preventing oxidation for the production of single-phase NiTi alloy in solid state. J Alloys Compd 655:364–371CrossRef
15.
go back to reference Bhosle V, Baburaj EG, Miranova M, Salama K (2003) Dehydrogenation of TiH2. Mater Sci Eng A 356:190–199CrossRef Bhosle V, Baburaj EG, Miranova M, Salama K (2003) Dehydrogenation of TiH2. Mater Sci Eng A 356:190–199CrossRef
16.
go back to reference Li BY, Rong LJ, Li YY (2000) Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure. Acta Mater 48:3895–3904CrossRef Li BY, Rong LJ, Li YY (2000) Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure. Acta Mater 48:3895–3904CrossRef
17.
go back to reference Robertson IM, Schaffer GB (2010) Comparison of sintering of titanium and titanium hydride powders. Powder Metall 53:12–19CrossRef Robertson IM, Schaffer GB (2010) Comparison of sintering of titanium and titanium hydride powders. Powder Metall 53:12–19CrossRef
18.
go back to reference Maziarz W, Dutkiewicz J, Humbeeck JV, Czeppe T (2004) Mechanically alloyed and hot pressed Ni–49.7Ti alloy showing martensitic transformation. Mater Sci Eng A 375:844–848CrossRef Maziarz W, Dutkiewicz J, Humbeeck JV, Czeppe T (2004) Mechanically alloyed and hot pressed Ni–49.7Ti alloy showing martensitic transformation. Mater Sci Eng A 375:844–848CrossRef
19.
go back to reference Siegmann S, Halter K and Wielage B (2002) Vacuum plasma sprayed coatings and freestanding parts of Ni–Ti shape memory alloy. In: ITSC 2002 international thermal spray conference, Essen, Germany, March 2002, pp 357–361 Siegmann S, Halter K and Wielage B (2002) Vacuum plasma sprayed coatings and freestanding parts of Ni–Ti shape memory alloy. In: ITSC 2002 international thermal spray conference, Essen, Germany, March 2002, pp 357–361
20.
go back to reference Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef
21.
go back to reference Schüller E, Bram M, Buchkremer HP, Stöver D (2004) Phase transformation temperatures for NiTi alloys prepared by powder metallurgical processes. Mater Sci Eng A 378:165–169CrossRef Schüller E, Bram M, Buchkremer HP, Stöver D (2004) Phase transformation temperatures for NiTi alloys prepared by powder metallurgical processes. Mater Sci Eng A 378:165–169CrossRef
22.
go back to reference Terayama A, Kyogoku H, Sakamura M, Komatsu S (2006) Fabrication of TiNi powder by mechanical alloying and shape memory characteristics of the sintered alloy. Mater Trans 47:550–557CrossRef Terayama A, Kyogoku H, Sakamura M, Komatsu S (2006) Fabrication of TiNi powder by mechanical alloying and shape memory characteristics of the sintered alloy. Mater Trans 47:550–557CrossRef
23.
go back to reference Yurko GA, Barton JW, Parr JG (1959) The crystal structure of Ti2Ni. Acta Crystallogr A 12:909–911CrossRef Yurko GA, Barton JW, Parr JG (1959) The crystal structure of Ti2Ni. Acta Crystallogr A 12:909–911CrossRef
24.
go back to reference Wang HW, Liu YF (2002) Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy. Mater Sci Eng A 338:126–132CrossRef Wang HW, Liu YF (2002) Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy. Mater Sci Eng A 338:126–132CrossRef
25.
go back to reference Neves F, Martins I, Correia JB, Oliveira M, Gaffet E (2007) Reactive extrusion synthesis of mechanically activated Ti–50Ni powders. Intermetallics 15:1623–1631CrossRef Neves F, Martins I, Correia JB, Oliveira M, Gaffet E (2007) Reactive extrusion synthesis of mechanically activated Ti–50Ni powders. Intermetallics 15:1623–1631CrossRef
26.
go back to reference Schwarz RB, Petrich RR, Saw CK (1985) The synthesis of amorphous Ni–Ti alloy powders by mechanical alloying. J Non-Cryst Solids 76:281–302CrossRef Schwarz RB, Petrich RR, Saw CK (1985) The synthesis of amorphous Ni–Ti alloy powders by mechanical alloying. J Non-Cryst Solids 76:281–302CrossRef
27.
go back to reference Chen G, Cao P (2013) NiTi powder sintering from TiH2 powder: an in situ investigation. Metall Mater Trans A 44:5630–5633CrossRef Chen G, Cao P (2013) NiTi powder sintering from TiH2 powder: an in situ investigation. Metall Mater Trans A 44:5630–5633CrossRef
28.
go back to reference Neves F, Braz Fernandes FM, Martins I, Correia JB, Oliveira M, Gaffet E, Wang T-Y, Lattemann M, Suffner J, Hahn H (2009) The transformation behaviour of bulk nanostructured NiTi alloys. Smart Mater Struct 18:115003CrossRef Neves F, Braz Fernandes FM, Martins I, Correia JB, Oliveira M, Gaffet E, Wang T-Y, Lattemann M, Suffner J, Hahn H (2009) The transformation behaviour of bulk nanostructured NiTi alloys. Smart Mater Struct 18:115003CrossRef
29.
go back to reference Otsuka K, Ren X (2005) Physical metallurgy of TiNi-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of TiNi-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef
30.
go back to reference Gasperini AAM, Machado KD, Buchner S, Lima JC, Grandi TA (2008) Influence of the temperature on the structure of an amorphous Ni46Ti54 alloy produced by mechanical alloying. Eur Phys J B64:201–209CrossRef Gasperini AAM, Machado KD, Buchner S, Lima JC, Grandi TA (2008) Influence of the temperature on the structure of an amorphous Ni46Ti54 alloy produced by mechanical alloying. Eur Phys J B64:201–209CrossRef
31.
go back to reference Saito T, Takasaki A (2009) The influence of chemical composition on shape memory effect of TiNi bulk alloy produced by mechanical alloying. Trans Mater Res Soc Jpn 34:403–406CrossRef Saito T, Takasaki A (2009) The influence of chemical composition on shape memory effect of TiNi bulk alloy produced by mechanical alloying. Trans Mater Res Soc Jpn 34:403–406CrossRef
33.
go back to reference Takasaki A (1998) Mechanical alloying of the Ti–Ni system. Phys Status Solidi a 169:183–191CrossRef Takasaki A (1998) Mechanical alloying of the Ti–Ni system. Phys Status Solidi a 169:183–191CrossRef
34.
go back to reference Mousavi T, Karimzadeh F, Abbasi MH (2008) Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Mater Sci Eng A 487:46–51CrossRef Mousavi T, Karimzadeh F, Abbasi MH (2008) Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Mater Sci Eng A 487:46–51CrossRef
35.
go back to reference Ghadimi M, Shokuhfar A, Rostami HR, Ghaffari M (2012) Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni–Ti elemental powders. Mater Lett 80:181–183CrossRef Ghadimi M, Shokuhfar A, Rostami HR, Ghaffari M (2012) Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni–Ti elemental powders. Mater Lett 80:181–183CrossRef
36.
go back to reference Chen G, Liss KD, Cao P (2014) In situ observation and neutron diffraction of NiTi powder sintering. Acta Mater 67:32–44CrossRef Chen G, Liss KD, Cao P (2014) In situ observation and neutron diffraction of NiTi powder sintering. Acta Mater 67:32–44CrossRef
37.
go back to reference Karolus M, Panek J (2016) Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment. J Alloys Compd 658:709–715CrossRef Karolus M, Panek J (2016) Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment. J Alloys Compd 658:709–715CrossRef
Metadata
Title
Mechanical activation of pre-alloyed NiTi2 and elemental Ni for the synthesis of NiTi alloys
Authors
X. Zhao
F. Neves
J. B. Correia
K. Liu
F. M. Braz Fernades
V. Koledov
S. von Gratowski
S. Xu
J. Huang
Publication date
13-06-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2560-5

Other articles of this Issue 19/2018

Journal of Materials Science 19/2018 Go to the issue

Premium Partners