Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2014

01-07-2014

Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane

Authors: Elzbieta Alicja Pieczyska, Michal Maj, Katarzyna Kowalczyk-Gajewska, Maria Staszczak, Leszek Urbanski, Hisaaki Tobushi, Shunichi Hayashi, Mariana Cristea

Published in: Journal of Materials Engineering and Performance | Issue 7/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W.M. Huang, B. Young and Y.Q. Fu, Polyurethane Shape Memory Polymers, CRC Press Taylor & Francis Group, 2012, p 31–50 W.M. Huang, B. Young and Y.Q. Fu, Polyurethane Shape Memory Polymers, CRC Press Taylor & Francis Group, 2012, p 31–50
2.
go back to reference H. Tobushi, R. Matsui, K. Takeda, and E.A. Pieczyska, Mechanical Properties of Shape Memory Materials. Materials Science and Technologies. Mechanical Engineering Theory and Applications, NOVA Publishers, New York, 2013 H. Tobushi, R. Matsui, K. Takeda, and E.A. Pieczyska, Mechanical Properties of Shape Memory Materials. Materials Science and Technologies. Mechanical Engineering Theory and Applications, NOVA Publishers, New York, 2013
3.
go back to reference S. Hayashi, Properties and Applications of Polyurethane-Series Shape Memory Polymer, Int. Prog. Urethanes, 1993, 6, p 90–115 S. Hayashi, Properties and Applications of Polyurethane-Series Shape Memory Polymer, Int. Prog. Urethanes, 1993, 6, p 90–115
4.
go back to reference H. Tobushi, E.A. Pieczyska, Y. Ejiri, and T. Sakuragi, Thermomechanical Properties of Shape Memory Alloy and Polymer and their Composite, Mech. Adv. Mater. Struct., 2009, 16, p 236–247CrossRef H. Tobushi, E.A. Pieczyska, Y. Ejiri, and T. Sakuragi, Thermomechanical Properties of Shape Memory Alloy and Polymer and their Composite, Mech. Adv. Mater. Struct., 2009, 16, p 236–247CrossRef
5.
go back to reference E.A. Pieczyska, W.K. Nowacki, H. Tobushi, and S. Hayashi, Thermomechanical Properties of Shape Memory Polymer Subjected to Tension in Various Conditions, QIRT J., 2010, 6, p 189–205CrossRef E.A. Pieczyska, W.K. Nowacki, H. Tobushi, and S. Hayashi, Thermomechanical Properties of Shape Memory Polymer Subjected to Tension in Various Conditions, QIRT J., 2010, 6, p 189–205CrossRef
6.
go back to reference H.J. Qi and M.C. Boyce, Stress-Strain Behavior of Thermoplastic Polyurethanes, Mech. Mater., 2005, 37, p 817–839CrossRef H.J. Qi and M.C. Boyce, Stress-Strain Behavior of Thermoplastic Polyurethanes, Mech. Mater., 2005, 37, p 817–839CrossRef
7.
go back to reference T. Takahashi, N. Hayashi, and S. Hayashi, Structure and Properties of Shape-Memory Polyurethane Block Copolymers, J. Appl. Polym. Sci., 1996, 60, p 1061–1069CrossRef T. Takahashi, N. Hayashi, and S. Hayashi, Structure and Properties of Shape-Memory Polyurethane Block Copolymers, J. Appl. Polym. Sci., 1996, 60, p 1061–1069CrossRef
8.
go back to reference K. Ito, K. Abe, H.-L. Li, Y. Ujihira, N. Ishikawa, and S. Hayashi, Variation of Free Volume Size and Content of Shape Memory Polymer-Polyurethane-Upon Temperature Studied by Positron Annihilation Lifetime Techniques and Infrared Spectroscopy, J. Radioanal. Nucl. Chem., 1996, 211, p 53–60CrossRef K. Ito, K. Abe, H.-L. Li, Y. Ujihira, N. Ishikawa, and S. Hayashi, Variation of Free Volume Size and Content of Shape Memory Polymer-Polyurethane-Upon Temperature Studied by Positron Annihilation Lifetime Techniques and Infrared Spectroscopy, J. Radioanal. Nucl. Chem., 1996, 211, p 53–60CrossRef
9.
go back to reference B.K. Kim, S.Y. Lee, and M. Xu, Polyurethanes Having Shape Memory Effects, Polymer, 1996, 37, p 5781–5793CrossRef B.K. Kim, S.Y. Lee, and M. Xu, Polyurethanes Having Shape Memory Effects, Polymer, 1996, 37, p 5781–5793CrossRef
10.
go back to reference M. Alexandru, M. Cazacu, M. Cristea, A. Nistor, C. Grigoras, and B.C. Simionescu, Poly(siloxane-urethane) Crosslinked Structures Obtained by Sol-Gel Technique, J. Polym. Sci. Part B, 2011, 49, p 1708–1718CrossRef M. Alexandru, M. Cazacu, M. Cristea, A. Nistor, C. Grigoras, and B.C. Simionescu, Poly(siloxane-urethane) Crosslinked Structures Obtained by Sol-Gel Technique, J. Polym. Sci. Part B, 2011, 49, p 1708–1718CrossRef
11.
go back to reference W. Thomson, (Lord Kelvin). Quart. J. Pure and Appl. Math, 1, 57, 1857; Math. and Phys. Papers, v.1, 291, 1882 W. Thomson, (Lord Kelvin). Quart. J. Pure and Appl. Math, 1, 57, 1857; Math. and Phys. Papers, v.1, 291, 1882
12.
go back to reference E.A. Pieczyska, Thermoelastic Effect in Austenitic Steel Referred to Its Hardening, J. Theor. Appl. Mech., 1999, 37(2), p 349–368 E.A. Pieczyska, Thermoelastic Effect in Austenitic Steel Referred to Its Hardening, J. Theor. Appl. Mech., 1999, 37(2), p 349–368
13.
go back to reference E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, Thermoelastic and Thermoplastic Effects Investigated in Steel, Polyamide and Shape Memory Alloys, Proc. of SPIE, Thermosense XXIV, USA, 4710, 2002, p 479–497 E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, Thermoelastic and Thermoplastic Effects Investigated in Steel, Polyamide and Shape Memory Alloys, Proc. of SPIE, Thermosense XXIV, USA, 4710, 2002, p 479–497
14.
go back to reference E.A. Pieczyska, S.P. Gadaj, and W.K. Nowacki, Temperature Changes in Polyamide Subjected to Tensile Deformation, Infrared Phys. Technol., 2002, 43(3-5), p 183–186CrossRef E.A. Pieczyska, S.P. Gadaj, and W.K. Nowacki, Temperature Changes in Polyamide Subjected to Tensile Deformation, Infrared Phys. Technol., 2002, 43(3-5), p 183–186CrossRef
15.
go back to reference W. Oliferuk, M. Maj, R. Litwinko, and L. Urbański, Thermomechanical Coupling in the Elastic Regime and Elasto-Plastic Transition During Tension of Austenitic Steel, Titanium and Aluminium Alloy at Strain Rates from 10-4 to 10-1 s-1, Eur. J. Mech. A Solids, 2012, 35, p 111–118CrossRef W. Oliferuk, M. Maj, R. Litwinko, and L. Urbański, Thermomechanical Coupling in the Elastic Regime and Elasto-Plastic Transition During Tension of Austenitic Steel, Titanium and Aluminium Alloy at Strain Rates from 10-4 to 10-1 s-1, Eur. J. Mech. A Solids, 2012, 35, p 111–118CrossRef
16.
go back to reference T.D. Nguyen, C.M. Yakacki, P.D. Brahmbhatt, and M.L. Chambers, Modeling the Relaxation Mechanisms of Amorphous Shape Memory Polymers, Adv. Mater., 2010, 22, p 3411–3423CrossRef T.D. Nguyen, C.M. Yakacki, P.D. Brahmbhatt, and M.L. Chambers, Modeling the Relaxation Mechanisms of Amorphous Shape Memory Polymers, Adv. Mater., 2010, 22, p 3411–3423CrossRef
17.
go back to reference H.J. Qi, T.D. Nguyen, F. Castro, ChM Yakacki, and R. Shandas, Finite Deformation Thermomechanical Behavior of Thermally Induced Shape Memory Polymers, J. Mech. Phys. Solids, 2008, 56, p 1730–1751CrossRef H.J. Qi, T.D. Nguyen, F. Castro, ChM Yakacki, and R. Shandas, Finite Deformation Thermomechanical Behavior of Thermally Induced Shape Memory Polymers, J. Mech. Phys. Solids, 2008, 56, p 1730–1751CrossRef
18.
go back to reference P. Gilormini and J. Diani, On Modeling Shape Memory Polymers as Thermoelastic Two-Phase Composite Materials, C .R. Mechanique, 2012, 340, 338–348 P. Gilormini and J. Diani, On Modeling Shape Memory Polymers as Thermoelastic Two-Phase Composite Materials, C .R. Mechanique, 2012, 340, 338–348
19.
go back to reference K. Kowalczyk-Gajewska and H. Petryk, Sequential Linearization Method for Viscous/Elastic Heterogeneous Materials, Eur. J. Mech. A Solids, 2011, 30, p 650–664CrossRef K. Kowalczyk-Gajewska and H. Petryk, Sequential Linearization Method for Viscous/Elastic Heterogeneous Materials, Eur. J. Mech. A Solids, 2011, 30, p 650–664CrossRef
20.
go back to reference S. Mercier, A. Molinari, S. Berbenni, and M. Berveiller, Comparison of Different Homogenization Approaches for Elastic-Viscoplastic Materials, Modelling Simul. Mater. Sci. Eng., 2012, 20, p 024004CrossRef S. Mercier, A. Molinari, S. Berbenni, and M. Berveiller, Comparison of Different Homogenization Approaches for Elastic-Viscoplastic Materials, Modelling Simul. Mater. Sci. Eng., 2012, 20, p 024004CrossRef
21.
go back to reference H. Tobushi, T. Hashimoto, S. Hayashi, and E. Yamada, Thermomechanical Constitutive Modelling in Shape Memory Polymer of Polyurethane Series, J. Intell. Mater. Syst. Struct., 1997, 8, p 711–718CrossRef H. Tobushi, T. Hashimoto, S. Hayashi, and E. Yamada, Thermomechanical Constitutive Modelling in Shape Memory Polymer of Polyurethane Series, J. Intell. Mater. Syst. Struct., 1997, 8, p 711–718CrossRef
22.
go back to reference H. Tobushi, H.K. Okumura, S. Hayashi, and N. Ito, Thermomechanical Constitutive Model of Shape Memory Polymer, Mech. Mater., 2001, 33, p 545–554CrossRef H. Tobushi, H.K. Okumura, S. Hayashi, and N. Ito, Thermomechanical Constitutive Model of Shape Memory Polymer, Mech. Mater., 2001, 33, p 545–554CrossRef
23.
go back to reference J. Korelc, Automation of Primal and Sensitivity Analysis of Transient Coupled Problems, Comput. Mech., 2009, 44, p 631–649CrossRef J. Korelc, Automation of Primal and Sensitivity Analysis of Transient Coupled Problems, Comput. Mech., 2009, 44, p 631–649CrossRef
24.
go back to reference B. Wcisło, J. Pamin, and K. Kowalczyk-Gajewska, Gradient-Enhanced Damage Model for Large Deformations of Elastic-Plastic Materials, Arch. Mech., 2013, 65(5), p 407–428 B. Wcisło, J. Pamin, and K. Kowalczyk-Gajewska, Gradient-Enhanced Damage Model for Large Deformations of Elastic-Plastic Materials, Arch. Mech., 2013, 65(5), p 407–428
Metadata
Title
Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane
Authors
Elzbieta Alicja Pieczyska
Michal Maj
Katarzyna Kowalczyk-Gajewska
Maria Staszczak
Leszek Urbanski
Hisaaki Tobushi
Shunichi Hayashi
Mariana Cristea
Publication date
01-07-2014
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2014
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-0963-2

Other articles of this Issue 7/2014

Journal of Materials Engineering and Performance 7/2014 Go to the issue

Premium Partners