Skip to main content
Top
Published in: Mechanics of Composite Materials 4/2018

12-09-2018

Mechanical Models and Finite-Element Approaches for the Structural Analysis of Photovoltaic Composite Structures: a Comparative Study

Authors: M. Haghi, M. Aßmus, K. Naumenko, H. Altenbach

Published in: Mechanics of Composite Materials | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In general, photovoltaic composite structures are three-layer laminates with a thin soft core layer. Due to the high contrast between the mechanical properties of skin and core layers, such structures have been studied by different theories. Finite-element models, continuum-based theories, and two-dimensional plate/shell theories are used in the analysis of laminated structures. The present study deals with the modeling and computational simulation of photovoltaic modules in the context of global structural mechanics. The focus is on the implementation of different elements in both two- and three-dimensional approaches to find the most efficient one for analyzing photovoltaic composite structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference S.-H. Schulze, M. Pander, K. Naumenko, and H. Altenbach, “Analysis of laminated glass beams for photovoltaic applications,” Int. J. Solids Structures, 49, No. 15-16, 2027-2036 (2012).CrossRef S.-H. Schulze, M. Pander, K. Naumenko, and H. Altenbach, “Analysis of laminated glass beams for photovoltaic applications,” Int. J. Solids Structures, 49, No. 15-16, 2027-2036 (2012).CrossRef
2.
go back to reference A. V. Duser, A. Jagota, and S. J. Bennison, “Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure,” J. Eng. Mech., 125, No. 4, 435-442 (1999).CrossRef A. V. Duser, A. Jagota, and S. J. Bennison, “Analysis of glass/polyvinyl butyral laminates subjected to uniform pressure,” J. Eng. Mech., 125, No. 4, 435-442 (1999).CrossRef
3.
go back to reference L. Galuppi and G. Royer-Carfagni, “Enhanced effective thickness of multi-layered laminated glass,” Composites: Part B, 64, 202-213 (2014).CrossRef L. Galuppi and G. Royer-Carfagni, “Enhanced effective thickness of multi-layered laminated glass,” Composites: Part B, 64, 202-213 (2014).CrossRef
4.
go back to reference M. M. e Costa, L. Valarinho, N. Silvestre, and J. R. Correia, “Modeling of the structural behavior of multilayer laminated glass beams: Flexural and torsional stiffness and lateral-torsional buckling,” Eng. Struct., 128, 265-282 (2016).CrossRef M. M. e Costa, L. Valarinho, N. Silvestre, and J. R. Correia, “Modeling of the structural behavior of multilayer laminated glass beams: Flexural and torsional stiffness and lateral-torsional buckling,” Eng. Struct., 128, 265-282 (2016).CrossRef
5.
go back to reference L. Valarinho, J. R. Correia, M. M. e Costa, F. A. Branco, and N. Silvestre, “Lateral-torsional buckling behaviour of long-span laminated glass beams: Analytical, experimental and numerical study,” Mater. Des., 102, 264-275 (2016).CrossRef L. Valarinho, J. R. Correia, M. M. e Costa, F. A. Branco, and N. Silvestre, “Lateral-torsional buckling behaviour of long-span laminated glass beams: Analytical, experimental and numerical study,” Mater. Des., 102, 264-275 (2016).CrossRef
6.
go back to reference G. Castori and E. Speranzini, “Structural analysis of failure behavior of laminated glass,” Composites: Part B., 125, 89-99 (2017).CrossRef G. Castori and E. Speranzini, “Structural analysis of failure behavior of laminated glass,” Composites: Part B., 125, 89-99 (2017).CrossRef
7.
go back to reference M. Aßmus, K. Naumenko, and H. Altenbach, “A multiscale projection approach for the coupled globallocal structural analysis of photovoltaic modules,” Compos. Struct., 158, 340-358 (2016).CrossRef M. Aßmus, K. Naumenko, and H. Altenbach, “A multiscale projection approach for the coupled globallocal structural analysis of photovoltaic modules,” Compos. Struct., 158, 340-358 (2016).CrossRef
8.
go back to reference E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” J. Appl. Mech., 12, 69-77 (1945). E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” J. Appl. Mech., 12, 69-77 (1945).
9.
go back to reference R. D. Mindlin, “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” J. Appl. Mech., 18, 31-38 (1951). R. D. Mindlin, “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” J. Appl. Mech., 18, 31-38 (1951).
10.
go back to reference M. Timmel, S. Kolling, P. Osterrieder, and P. D. Bois, “A finite element model for impact simulation with laminated glass,” Int. J. Impact Engineering, 34, No. 8, 1465-1478 (2007).CrossRef M. Timmel, S. Kolling, P. Osterrieder, and P. D. Bois, “A finite element model for impact simulation with laminated glass,” Int. J. Impact Engineering, 34, No. 8, 1465-1478 (2007).CrossRef
11.
go back to reference P. D. Bois, S. Kolling, and W. Fassnacht, “Modelling of safety glass for crash simulation,” Computat. Mater. Sci., 28, No. 3-4, 675-683 (2003).CrossRef P. D. Bois, S. Kolling, and W. Fassnacht, “Modelling of safety glass for crash simulation,” Computat. Mater. Sci., 28, No. 3-4, 675-683 (2003).CrossRef
12.
go back to reference M. Kim and A. Gupta, “Finite element analysis of free vibrations of laminated composite plates,” Int. J. Analytical and Experimental Modal Analysis, 5, No. 3, 195-203 (1990). M. Kim and A. Gupta, “Finite element analysis of free vibrations of laminated composite plates,” Int. J. Analytical and Experimental Modal Analysis, 5, No. 3, 195-203 (1990).
13.
go back to reference A. G. Niyogi, M. K. Laha, and P. K. Sinha, “Finite element vibration analysis of laminated composite folded plate structures,” Shock and Vibration, 6, No. 5-6, 273-283 (1999).CrossRef A. G. Niyogi, M. K. Laha, and P. K. Sinha, “Finite element vibration analysis of laminated composite folded plate structures,” Shock and Vibration, 6, No. 5-6, 273-283 (1999).CrossRef
14.
go back to reference M. K. Pandit, S. Haldar, and M. Mukhopadhyay, “Free vibration analysis of laminated composite rectangular plate using finite element method,” J. Reinforced Plastics and Compos., 26, No. 1, 69-80 (2007).CrossRef M. K. Pandit, S. Haldar, and M. Mukhopadhyay, “Free vibration analysis of laminated composite rectangular plate using finite element method,” J. Reinforced Plastics and Compos., 26, No. 1, 69-80 (2007).CrossRef
15.
go back to reference R. Rikards, “Finite element analysis of vibration and damping of laminated composites,” Compos. Struct., 24, No. 3, 193-204 (1993).CrossRef R. Rikards, “Finite element analysis of vibration and damping of laminated composites,” Compos. Struct., 24, No. 3, 193-204 (1993).CrossRef
16.
go back to reference H. Altenbach, V. A. Eremeyev, and K. Naumenko, “On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer,” Zeitchrift für Angewandte Mathematik und Mechanik, 95, No. 10, 1004-1011 (2015).CrossRef H. Altenbach, V. A. Eremeyev, and K. Naumenko, “On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer,” Zeitchrift für Angewandte Mathematik und Mechanik, 95, No. 10, 1004-1011 (2015).CrossRef
17.
go back to reference J. Eisenträger, K. Naumenko, H. Altenbach, and H. Köppe, “Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels,” Int. J. Mech. Sci., 96-97, 163-171 (2015).CrossRef J. Eisenträger, K. Naumenko, H. Altenbach, and H. Köppe, “Application of the first-order shear deformation theory to the analysis of laminated glasses and photovoltaic panels,” Int. J. Mech. Sci., 96-97, 163-171 (2015).CrossRef
18.
go back to reference K. Naumenko and V. A. Eremeyev, “A layer-wise theory for laminated glass and photovoltaic panels,” Compos. Struct., 112, 283-291 (2014).CrossRef K. Naumenko and V. A. Eremeyev, “A layer-wise theory for laminated glass and photovoltaic panels,” Compos. Struct., 112, 283-291 (2014).CrossRef
19.
go back to reference M. Weps, K. Naumenko, and H. Altenbach, “Unsymmetric three-layer laminate with soft core for photovoltaic modules,” Compos. Struct., 105, 332-339 (2013).CrossRef M. Weps, K. Naumenko, and H. Altenbach, “Unsymmetric three-layer laminate with soft core for photovoltaic modules,” Compos. Struct., 105, 332-339 (2013).CrossRef
20.
go back to reference J. Eisenträger, K. Naumenko, H. Altenbach, and J. Meenen, “A user-defined finite element for glass and photovoltaic panels based on a layer-wise theory,” Compos. Struct., 133, 265-277 (2015).CrossRef J. Eisenträger, K. Naumenko, H. Altenbach, and J. Meenen, “A user-defined finite element for glass and photovoltaic panels based on a layer-wise theory,” Compos. Struct., 133, 265-277 (2015).CrossRef
21.
go back to reference L. P. Lebedev, M. J. Cloud, and V. A. Eremeyev, Tensor Analysis with Applications in Mechanics, World Scientific, (2010). L. P. Lebedev, M. J. Cloud, and V. A. Eremeyev, Tensor Analysis with Applications in Mechanics, World Scientific, (2010).
22.
go back to reference H. Altenbach, Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen, 3rd Edition, Springer, Berlin, Heidelberg (2015).CrossRef H. Altenbach, Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen, 3rd Edition, Springer, Berlin, Heidelberg (2015).CrossRef
23.
go back to reference A. Bertram, Elasticity and Plasticity of Large Deformations: An Introduction, 3rd Edition, Springer, Berlin, Heidelberg (2012).CrossRef A. Bertram, Elasticity and Plasticity of Large Deformations: An Introduction, 3rd Edition, Springer, Berlin, Heidelberg (2012).CrossRef
24.
go back to reference E. Carrera, “Theories and finite elements for multilayered, anisotropic, composite plates and shells,” Archives of Computational Methods in Engineering, 9, No. 2, 87-140 (2002).CrossRef E. Carrera, “Theories and finite elements for multilayered, anisotropic, composite plates and shells,” Archives of Computational Methods in Engineering, 9, No. 2, 87-140 (2002).CrossRef
25.
go back to reference Simulia, ABAQUS® Analysis User’s Guide, ABAQUS® 6.14 Documentation, Volume IV: Elements, Dassault Systmes, (2014). Simulia, ABAQUS® Analysis User’s Guide, ABAQUS® 6.14 Documentation, Volume IV: Elements, Dassault Systmes, (2014).
26.
go back to reference Simulia, ABAQUS® Theory Guide, ABAQUS® 6.14 Documentation, Dassault Systmes, (2014). Simulia, ABAQUS® Theory Guide, ABAQUS® 6.14 Documentation, Dassault Systmes, (2014).
27.
go back to reference E. Ellobody, R. Feng, and B. Young, Finite Element Analysis and Design of Metal Structures, Butterworth-Heinemann, Boston (2014). E. Ellobody, R. Feng, and B. Young, Finite Element Analysis and Design of Metal Structures, Butterworth-Heinemann, Boston (2014).
28.
go back to reference J. N. Reddy, “On refined computational models of composite laminates,” International Journal for Numerical Methods in Engineering, 27, No. 2, 361-382 (1989).CrossRef J. N. Reddy, “On refined computational models of composite laminates,” International Journal for Numerical Methods in Engineering, 27, No. 2, 361-382 (1989).CrossRef
29.
go back to reference J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Boca Raton, (2003). J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Boca Raton, (2003).
30.
go back to reference Y. Zhang and C. Yang, “Recent developments in finite element analysis for laminated composite plates,” Compos. Struct., 88, No. 1, 147-157 (2009).CrossRef Y. Zhang and C. Yang, “Recent developments in finite element analysis for laminated composite plates,” Compos. Struct., 88, No. 1, 147-157 (2009).CrossRef
31.
go back to reference M. Aßmus, J. Nordmann, K. Naumenko, and H. Altenbach, “A homogeneous substitute material for the core layer of photovoltaic composite structures,” Composites: Part B., 112, 353-372 (2017).CrossRef M. Aßmus, J. Nordmann, K. Naumenko, and H. Altenbach, “A homogeneous substitute material for the core layer of photovoltaic composite structures,” Composites: Part B., 112, 353-372 (2017).CrossRef
32.
go back to reference M. Aßmus, S. Bergmann, K. Naumenko, and H. Altenbach, “Mechanical behaviour of photovoltaic composite structures: A parameter study on the influence of geometric dimensions and material properties under static loading,” Compos. Communic., 5, 23-26 (2017).CrossRef M. Aßmus, S. Bergmann, K. Naumenko, and H. Altenbach, “Mechanical behaviour of photovoltaic composite structures: A parameter study on the influence of geometric dimensions and material properties under static loading,” Compos. Communic., 5, 23-26 (2017).CrossRef
33.
go back to reference M. Aßmus, S. Bergmann, J. Eisenträger, K. Naumenko, and H. Altenbach, in : H. Altenbach, R. Goldstein, and E. Murashkin (eds.), Mechanics for Material and Technologies. Advanced Structural Materials, Springer, Cham, 46, 73-122 (2017). M. Aßmus, S. Bergmann, J. Eisenträger, K. Naumenko, and H. Altenbach, in : H. Altenbach, R. Goldstein, and E. Murashkin (eds.), Mechanics for Material and Technologies. Advanced Structural Materials, Springer, Cham, 46, 73-122 (2017).
Metadata
Title
Mechanical Models and Finite-Element Approaches for the Structural Analysis of Photovoltaic Composite Structures: a Comparative Study
Authors
M. Haghi
M. Aßmus
K. Naumenko
H. Altenbach
Publication date
12-09-2018
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 4/2018
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9752-6

Other articles of this Issue 4/2018

Mechanics of Composite Materials 4/2018 Go to the issue

Premium Partners