Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 2/2014

01-02-2014

Mechanical Property Enhancement of Ti-6Al-4V by Multilayer Thin Solid Film Ti/TiO2 Nanotubular Array Coating for Biomedical Application

Authors: Erfan Zalnezhad, Saeid Baradaran, A. R. Bushroa, Ahmed A. D. Sarhan

Published in: Metallurgical and Materials Transactions A | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the intention of improving the mechanical properties of Ti-6Al-4V, samples were first coated with pure titanium using the physical vapor deposition (PVD) magnetron sputtering technique. The Taguchi optimization method was used to attain a higher coating on substrate adhesion. Second, pure titanium-coated samples with higher adhesion were anodized to generate TiO2 nanotubes. Next, the TiO2-coated specimens were heat treated at annealing temperatures of 753.15 K and 923.15 K (480 °C and 650 °C). The XRD results indicate that the varying heat treatment temperatures produced different phases, namely, anatase [753.15 K (480 °C)] and rutile [923.15 K (650 °C)]. Finally, the coated samples’ mechanical properties (surface hardness, adhesion, and fretting fatigue life) were investigated. The fretting fatigue lives of TiO2-coated specimens at 753.15 K and 923.15 K (480 °C and 650 °C) annealing temperatures were significantly enhanced compared to uncoated samples at low and high cyclic fatigue. The results also indicate that TiO2-coated samples heat treated at an annealing temperature of 753.15 K (480 °C) (anatase phase) are more suitable for increasing fretting fatigue life at high cyclic fatigue (HCF), while at low cyclic fatigue, the annealing temperature of 923.15 K (650 °C) seemed to be more appropriate. The fretting fatigue life enhancement of thin-film TiO2 nanotubular array-coated Ti-6Al-4V is due to the ceramic nature of TiO2 which produces a hard surface as well as a lower coefficient of friction of the TiO2 nanotube surface that decreases the fretting between contacting components, namely, the sample and friction pad surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Niinomi, Metall. Mater. Trans A, 32A (2001) pp. 477-86. M. Niinomi, Metall. Mater. Trans A, 32A (2001) pp. 477-86.
4.
go back to reference A.P. Tomsia, E. Saiz, J. Song, C.R. Bertozzi, Adv. Eng. Mater. 7(11) (2005) 999–1004.CrossRef A.P. Tomsia, E. Saiz, J. Song, C.R. Bertozzi, Adv. Eng. Mater. 7(11) (2005) 999–1004.CrossRef
5.
go back to reference G.B. de Souza, G.G. de Lima, N.K. Kuromoto, P. Soares, C.M. Lepienski, C.E. Foerster, A. Mikowski, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 796–806.CrossRef G.B. de Souza, G.G. de Lima, N.K. Kuromoto, P. Soares, C.M. Lepienski, C.E. Foerster, A. Mikowski, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 796–806.CrossRef
6.
go back to reference G.B. de Souza, C.M. Lepienski, C.E. Foerster, N.K. Kuromoto, P. Soares, H.A. Ponte, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 756–65.CrossRef G.B. de Souza, C.M. Lepienski, C.E. Foerster, N.K. Kuromoto, P. Soares, H.A. Ponte, J. Mech. Behav. Biomed. Mater. 4/5 (2011) 756–65.CrossRef
7.
go back to reference S.J. Ding, C.P. Ju, J.H.C. Lin, J. Biomed. Mater. Res. A 47/4 (1999) 551–63.CrossRef S.J. Ding, C.P. Ju, J.H.C. Lin, J. Biomed. Mater. Res. A 47/4 (1999) 551–63.CrossRef
9.
go back to reference X. Fan, Y. Zhang, P. Xiao, F. Hu, H. Zhang, J. Chem. Phys. 20 (2007) 753–58. X. Fan, Y. Zhang, P. Xiao, F. Hu, H. Zhang, J. Chem. Phys. 20 (2007) 753–58.
10.
go back to reference M. Farooq, Z.H. Lee, J. Korean Phys. Soc. 40/3 (2002) 511–15. M. Farooq, Z.H. Lee, J. Korean Phys. Soc. 40/3 (2002) 511–15.
11.
go back to reference S. Gangopadhyay, R. Acharya, A.K. Chattopadhyay, S. Paul, Vacuum 84/6 (2010) 843–50.CrossRef S. Gangopadhyay, R. Acharya, A.K. Chattopadhyay, S. Paul, Vacuum 84/6 (2010) 843–50.CrossRef
12.
14.
go back to reference A. Kodama, S. Bauer, A. Komatsu, H. Asoh, S. Ono, P. Schmuki, Acta Biomater. 5/6 (2009) 2322–30.CrossRef A. Kodama, S. Bauer, A. Komatsu, H. Asoh, S. Ono, P. Schmuki, Acta Biomater. 5/6 (2009) 2322–30.CrossRef
16.
go back to reference S. Baradaran, W.J. Basirun, E. Zalnezhad, M. Hamdi, Ahmed A.D. Sarhan, Y. Alias (2013) J. Mech. Behav. Biomed. 20, 272–82.CrossRef S. Baradaran, W.J. Basirun, E. Zalnezhad, M. Hamdi, Ahmed A.D. Sarhan, Y. Alias (2013) J. Mech. Behav. Biomed. 20, 272–82.CrossRef
17.
go back to reference T. Sultana, G.L. Georgiev, R.J. Baird, G.W. Auner, G. Newaz, R. Patwa, H.J. Herfurth, J. Mech. Behav. Biomed. 2 (2009) 237–42.CrossRef T. Sultana, G.L. Georgiev, R.J. Baird, G.W. Auner, G. Newaz, R. Patwa, H.J. Herfurth, J. Mech. Behav. Biomed. 2 (2009) 237–42.CrossRef
18.
go back to reference S. Li, J. Yin, G. Zhang, Sci. China 53/5 (2010) 1068–73. S. Li, J. Yin, G. Zhang, Sci. China 53/5 (2010) 1068–73.
19.
go back to reference S.Q. Liu, Bioregenerative Engineering: Principles and Applications, Wiley, Hoboken, NJ, (2007).CrossRef S.Q. Liu, Bioregenerative Engineering: Principles and Applications, Wiley, Hoboken, NJ, (2007).CrossRef
20.
go back to reference J. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, J. Electroanal. Chem. 621/2 (2008) 254–66.CrossRef J. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, J. Electroanal. Chem. 621/2 (2008) 254–66.CrossRef
21.
go back to reference M. Mayo, R. Siegel, A. Narayanasamy, W. Nix, J. Mater. Res. 5/05 (1990) 1073–82.CrossRef M. Mayo, R. Siegel, A. Narayanasamy, W. Nix, J. Mater. Res. 5/05 (1990) 1073–82.CrossRef
22.
go back to reference V. Nelea, C. Morosanu, M. Iliescu, I. Mihailescu, Surf. Coat. Technol. 173/2 (2003) 315–22.CrossRef V. Nelea, C. Morosanu, M. Iliescu, I. Mihailescu, Surf. Coat. Technol. 173/2 (2003) 315–22.CrossRef
23.
go back to reference J.M. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki: Electrochem. Commun., 2005, vol. 7 (11), pp. 1133–37. J.M. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki: Electrochem. Commun., 2005, vol. 7 (11), pp. 1133–37.
24.
go back to reference M. Metikoš-Hukovič, A. Kwokal, and J. Piljac: Biomaterials, 2003, vol. 24, pp. 3765–75. M. Metikoš-Hukovič, A. Kwokal, and J. Piljac: Biomaterials, 2003, vol. 24, pp. 3765–75.
25.
go back to reference ISO Standard: Metallic Materials—Rotating Bar Bending Fatigue Testing, ISO International, 2010. ISO Standard: Metallic Materials—Rotating Bar Bending Fatigue Testing, ISO International, 2010.
26.
go back to reference J.A. Ghani, I.A. Choudhury, H.H. Hassan, J. Mater. Process. Technol. 145/1 (2004) 84–92.CrossRef J.A. Ghani, I.A. Choudhury, H.H. Hassan, J. Mater. Process. Technol. 145/1 (2004) 84–92.CrossRef
27.
go back to reference J.A. Toque, M.K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, I. Sopyan, J. Mech. Behav. Biomed. Mater. 3/4 (2010) 324–30.CrossRef J.A. Toque, M.K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, I. Sopyan, J. Mech. Behav. Biomed. Mater. 3/4 (2010) 324–30.CrossRef
28.
29.
go back to reference G. Crawford, N. Chawla, J. Houston, J. Mech. Behav. Biomed. Mater. 2/6 (2009) 580–87.CrossRef G. Crawford, N. Chawla, J. Houston, J. Mech. Behav. Biomed. Mater. 2/6 (2009) 580–87.CrossRef
30.
31.
go back to reference Y. Al-Khatatbeh, K.K. M. Lee, B. Kiefer, J. Phys. Chem. C. 116 (2012) 21635–39.CrossRef Y. Al-Khatatbeh, K.K. M. Lee, B. Kiefer, J. Phys. Chem. C. 116 (2012) 21635–39.CrossRef
32.
go back to reference W.Y. Chang, T.H. Fang, Z.W. Chiu, Y.J. Hsiao, L.W. Ji, Microporous Mesoporous Mater. 145/1 (2011) 87–92.CrossRef W.Y. Chang, T.H. Fang, Z.W. Chiu, Y.J. Hsiao, L.W. Ji, Microporous Mesoporous Mater. 145/1 (2011) 87–92.CrossRef
33.
go back to reference A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, K. Katagiri, K. Koumoto (2008) J. Mater. Sci. 43(17), 5924–29.CrossRef A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, K. Katagiri, K. Koumoto (2008) J. Mater. Sci. 43(17), 5924–29.CrossRef
34.
go back to reference M.R. VanLandingham, J. Res. Natl Inst. Stand. Technol. 108/4 (2003) 249–65.CrossRef M.R. VanLandingham, J. Res. Natl Inst. Stand. Technol. 108/4 (2003) 249–65.CrossRef
35.
go back to reference T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, ACS Nano 3/10 (2009) 3098–3102.CrossRef T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, ACS Nano 3/10 (2009) 3098–3102.CrossRef
36.
go back to reference B. Rajasekaran, S. Ganesh Sundara Raman, L. Rama Krishna, S.V. Joshi, G. Sundararajan (2008) Surf. Coat. Technol. 202(8) 1462–69.CrossRef B. Rajasekaran, S. Ganesh Sundara Raman, L. Rama Krishna, S.V. Joshi, G. Sundararajan (2008) Surf. Coat. Technol. 202(8) 1462–69.CrossRef
37.
go back to reference Y. Sun, K. Yan, G. Wang, W. Guo, T. Ma, J. Phys. Chem. C. 115 (2011), 12844–49.CrossRef Y. Sun, K. Yan, G. Wang, W. Guo, T. Ma, J. Phys. Chem. C. 115 (2011), 12844–49.CrossRef
39.
40.
go back to reference L. Pazos, P. Corengia, H. Svoboda, J. Mech. Behav. Biomed. Mater. 3/6 (2010) 416–24.CrossRef L. Pazos, P. Corengia, H. Svoboda, J. Mech. Behav. Biomed. Mater. 3/6 (2010) 416–24.CrossRef
41.
go back to reference E. Zalnezhad, A.A.D. Sarhan, M. Hamdi (2012) Int. J. Precision Eng. Manuf. 13, 1453–59.CrossRef E. Zalnezhad, A.A.D. Sarhan, M. Hamdi (2012) Int. J. Precision Eng. Manuf. 13, 1453–59.CrossRef
Metadata
Title
Mechanical Property Enhancement of Ti-6Al-4V by Multilayer Thin Solid Film Ti/TiO2 Nanotubular Array Coating for Biomedical Application
Authors
Erfan Zalnezhad
Saeid Baradaran
A. R. Bushroa
Ahmed A. D. Sarhan
Publication date
01-02-2014
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 2/2014
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-013-2043-x

Other articles of this Issue 2/2014

Metallurgical and Materials Transactions A 2/2014 Go to the issue

Premium Partners