Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2019

26-06-2019 | Original Paper: Nano- and macro-porous materials (aerogels, xerogels, cryogels, etc.)

Mechanical strengths and thermal properties of titania-doped alumina aerogels and the application as high-temperature thermal insulator

Authors: Min Gao, Benxue Liu, Ping Zhao, Xibin Yi, Xiaodong Shen, Yue Xu

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Alumina (Al2O3)-based diphasic aerogels have better physical properties than those of pure Al2O3 aerogel according to previous studies. In the present research, we focused on an alumina–titania (Al2O3-TiO2) diphasic aerogel. A series of Al2O3 aerogels were synthesized and studied with and without minor TiO2 dopants (up to 10 mol%). We found that the pure Al2O3 aerogel, which had the fiber-like particles, was stronger than those with TiO2 dopants that possessed the sphere-like particles. However, the sphere-like particles make the TiO2-doped Al2O3 aerogel (with 3 mol% TiO2) possessing the largest specific surface area (SSA) of 650 m2/g, much larger than that of the pure Al2O3 aerogel (326 m2/g). This work proved that fiber-like particles enhance strength but reduce SSA of Al2O3 aerogel. At last, ceramic fibers reinforced Al2O3 aerogel composites with the sizes of 20 cm width × 20 cm length × 1 cm thickness were fabricated. The aerogel composites possessed a thermal conductivity of 0.136 W/m K at 1000 °C, better than those of the ceramic fiber blankets itself (0.30 W/m K), indicating potential application as high-temperature thermal insulator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Hüsing N, Schubert U (2010) Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45CrossRef Hüsing N, Schubert U (2010) Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45CrossRef
2.
go back to reference Dorcheh AS, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Tech. 199:10–26CrossRef Dorcheh AS, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Tech. 199:10–26CrossRef
3.
go back to reference Zu G, Shimizu T, Kanamori K, Zhu Y, Maeno A, Kaji H, Shen J, Nakanishi K (2018) Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 12:521–532CrossRef Zu G, Shimizu T, Kanamori K, Zhu Y, Maeno A, Kaji H, Shen J, Nakanishi K (2018) Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 12:521–532CrossRef
4.
go back to reference Zu G, Kanamori K, Maeno A, Kaji H, Nakanishi K (2018) Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors. Angew Chem Int Ed 57:9722–9727CrossRef Zu G, Kanamori K, Maeno A, Kaji H, Nakanishi K (2018) Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors. Angew Chem Int Ed 57:9722–9727CrossRef
5.
go back to reference Zu G, Kanamori K, Shimizu T, Zhu Y, Maeno A, Kaji H, Nakanishi K, Shen J (2018) Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators. Chem Mater 30:2759–2770CrossRef Zu G, Kanamori K, Shimizu T, Zhu Y, Maeno A, Kaji H, Nakanishi K, Shen J (2018) Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators. Chem Mater 30:2759–2770CrossRef
6.
go back to reference Emmerling A, Gross J, Gerlach R, Goswin R, Reichenauer G (1990) Isothermal sintering SiO2-aerogels. J Non-Cryst Solids 125:230–243CrossRef Emmerling A, Gross J, Gerlach R, Goswin R, Reichenauer G (1990) Isothermal sintering SiO2-aerogels. J Non-Cryst Solids 125:230–243CrossRef
7.
go back to reference Dong JS, Park TJ (1996) Sol–gel strategies for pore size control of high-surface-area transition-metal oxide aerogels. Chem Mater 8:509–513CrossRef Dong JS, Park TJ (1996) Sol–gel strategies for pore size control of high-surface-area transition-metal oxide aerogels. Chem Mater 8:509–513CrossRef
8.
go back to reference Suh DJ, Park TJ, Han HY, Lim JC (2002) Synthesis of high-surface-area zirconia aerogels with a well-developed mesoporous texture using CO2 supercritical drying. Chem Mater 141:452–1454 Suh DJ, Park TJ, Han HY, Lim JC (2002) Synthesis of high-surface-area zirconia aerogels with a well-developed mesoporous texture using CO2 supercritical drying. Chem Mater 141:452–1454
9.
go back to reference Campbell LK, Na BK, Ko EI (1992) Synthesis and characterization of titania aerogels. Chem Mater 4:1329–1333CrossRef Campbell LK, Na BK, Ko EI (1992) Synthesis and characterization of titania aerogels. Chem Mater 4:1329–1333CrossRef
10.
go back to reference Keysar S, Shter GE, Hazan YD, Cohen AY, Grader GS (1997) Heat treatment of alumina aerogels. Chem Mater 9:2464–2467CrossRef Keysar S, Shter GE, Hazan YD, Cohen AY, Grader GS (1997) Heat treatment of alumina aerogels. Chem Mater 9:2464–2467CrossRef
11.
go back to reference Hirashima H, Kojima C, Imai H (1997) Application of alumina aerogels as catalysts. J Sol–Gel Sci Technol 8:843–846 Hirashima H, Kojima C, Imai H (1997) Application of alumina aerogels as catalysts. J Sol–Gel Sci Technol 8:843–846
12.
go back to reference Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265CrossRef Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265CrossRef
13.
go back to reference Xu L, Jiang Y, Feng J, Feng J, Yue C (2015) Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceram Int 41:437–442CrossRef Xu L, Jiang Y, Feng J, Feng J, Yue C (2015) Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceram Int 41:437–442CrossRef
14.
go back to reference Kucheyev SO, Baumann TF, Cox CA, Wang YM (2006) Nanoengineering mechanically robust aerogels via control of foam morphology. Appl Phys Lett 89:041911CrossRef Kucheyev SO, Baumann TF, Cox CA, Wang YM (2006) Nanoengineering mechanically robust aerogels via control of foam morphology. Appl Phys Lett 89:041911CrossRef
15.
go back to reference Zu G, Shen J, Zou L, Wang W, Lian Y, Zhang Z, Du A (2013) Nanoengineering super heat-resistant, strong alumina aerogels. Chem Mater 25:4757–4764CrossRef Zu G, Shen J, Zou L, Wang W, Lian Y, Zhang Z, Du A (2013) Nanoengineering super heat-resistant, strong alumina aerogels. Chem Mater 25:4757–4764CrossRef
16.
go back to reference Zu G, Shen J, Wang W, Zou L, Lian Y, Zhang Z, Liu B, Zhang F (2014) Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts. Chem Mater 26:5761–5772CrossRef Zu G, Shen J, Wang W, Zou L, Lian Y, Zhang Z, Liu B, Zhang F (2014) Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts. Chem Mater 26:5761–5772CrossRef
17.
go back to reference Hurwitz FI, Gallagher MT, Olin C, Shave MK, Ittes M, Olafson KN, Fields MG, Rogers RB (2014) Optimization of alumina and aluminosilicate aerogel structure for high-temperature performance. Int J Appl Glass Sci 5:276–286CrossRef Hurwitz FI, Gallagher MT, Olin C, Shave MK, Ittes M, Olafson KN, Fields MG, Rogers RB (2014) Optimization of alumina and aluminosilicate aerogel structure for high-temperature performance. Int J Appl Glass Sci 5:276–286CrossRef
18.
go back to reference Benad A, Jurries F, Vetter B, Klemmed B, Hubner R (2018) Mechanical properties of metal oxide aerogels. Chem Mater 30:145–152CrossRef Benad A, Jurries F, Vetter B, Klemmed B, Hubner R (2018) Mechanical properties of metal oxide aerogels. Chem Mater 30:145–152CrossRef
19.
go back to reference Kwon YG, Choi SY, Kang ES, Baek SS (2000) Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation. J Mater Sci 35:6075–6079CrossRef Kwon YG, Choi SY, Kang ES, Baek SS (2000) Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation. J Mater Sci 35:6075–6079CrossRef
20.
go back to reference Kuhn J, Gleissner T, Schuster MCA, Korder S, Fricke J (1995) Integration of mineral powders into SiO2 aerogels. J Non-Cryst Solids 186:291–295CrossRef Kuhn J, Gleissner T, Schuster MCA, Korder S, Fricke J (1995) Integration of mineral powders into SiO2 aerogels. J Non-Cryst Solids 186:291–295CrossRef
21.
go back to reference Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300CrossRef Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300CrossRef
22.
go back to reference Zhang H, Qiao Y, Zhang X, Fang S (2010) Structural and thermal study of highly porous nanocomposite SiO2-based aerogels. J Non-Cryst Solids 356:879–883CrossRef Zhang H, Qiao Y, Zhang X, Fang S (2010) Structural and thermal study of highly porous nanocomposite SiO2-based aerogels. J Non-Cryst Solids 356:879–883CrossRef
23.
go back to reference Yang J, Wang Q, Wang T (2017) Effects of Ti addition on alumina/titania composite aerogels synthesized by Sol–Gel process and supercritical ethanol drying. J Chin Chem Soc 64:978–985CrossRef Yang J, Wang Q, Wang T (2017) Effects of Ti addition on alumina/titania composite aerogels synthesized by Sol–Gel process and supercritical ethanol drying. J Chin Chem Soc 64:978–985CrossRef
24.
go back to reference Hurwitz FI, Rogers RB, Sheets EJ, Miller DR, Newlin KN (2012) Influence of Ti addition on boehmite-derived aluminum silicate aerogels: structure and properties. J Sol–Gel Sci Technol 64:367–374CrossRef Hurwitz FI, Rogers RB, Sheets EJ, Miller DR, Newlin KN (2012) Influence of Ti addition on boehmite-derived aluminum silicate aerogels: structure and properties. J Sol–Gel Sci Technol 64:367–374CrossRef
25.
go back to reference Erkalfa H, Misirli Z, Baykara T (1998) The effect of TiO2 and MnO2 on the densification and microstructural development of alumina. Ceram Int 24:81–90CrossRef Erkalfa H, Misirli Z, Baykara T (1998) The effect of TiO2 and MnO2 on the densification and microstructural development of alumina. Ceram Int 24:81–90CrossRef
26.
go back to reference Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York
27.
go back to reference Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341CrossRef Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341CrossRef
28.
go back to reference Bolt PH, Habraken FHPM, Geus JW (1998) Formation of nickel, cobalt, copper, and iron aluminates from α- and γ-alumina-supported oxides: a comparative study. J Solid State Chem 135:59–69CrossRef Bolt PH, Habraken FHPM, Geus JW (1998) Formation of nickel, cobalt, copper, and iron aluminates from α- and γ-alumina-supported oxides: a comparative study. J Solid State Chem 135:59–69CrossRef
30.
go back to reference Sun X, Wu Y, Wang Y, Li M (2019) Investigation of the effect of lanthanum oxide on the thermal stability of alumina aerogel. J Porous Mater 26:327–333 Sun X, Wu Y, Wang Y, Li M (2019) Investigation of the effect of lanthanum oxide on the thermal stability of alumina aerogel. J Porous Mater 26:327–333
31.
go back to reference Wu L, Huang Y, Wang Z, Liu L, Xu H (2010) Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying. Appl Surf Sci 256:5973–5977CrossRef Wu L, Huang Y, Wang Z, Liu L, Xu H (2010) Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying. Appl Surf Sci 256:5973–5977CrossRef
32.
go back to reference Hurwitz FI, Rogers RB, Guo H, Yu K, Domanowski J, Schmid E, Fields MG (2017) The role of phase changes in maintaining pore structure on thermal exposure of aluminosilicate aerogels. MRS Commun 7:1–9CrossRef Hurwitz FI, Rogers RB, Guo H, Yu K, Domanowski J, Schmid E, Fields MG (2017) The role of phase changes in maintaining pore structure on thermal exposure of aluminosilicate aerogels. MRS Commun 7:1–9CrossRef
33.
go back to reference Mercuri F, Costa D, Marcus P (2009) Theoretical investigations of the relaxation and reconstruction of the γ-AlO(OH) boehmite (101) surface and boehmite nanorods. J Phys Chem C 113:5228–5237CrossRef Mercuri F, Costa D, Marcus P (2009) Theoretical investigations of the relaxation and reconstruction of the γ-AlO(OH) boehmite (101) surface and boehmite nanorods. J Phys Chem C 113:5228–5237CrossRef
34.
go back to reference Ren L, Li X, Cui S (2016) Synthesis of monolithic Fe2O3–Al2O3 composite aerogels via organic solvent sublimation drying. J Nanomater 2016:8135043 Ren L, Li X, Cui S (2016) Synthesis of monolithic Fe2O3–Al2O3 composite aerogels via organic solvent sublimation drying. J Nanomater 2016:8135043
35.
go back to reference Li X, He H, Cui S, Ren L (2012) Synthesis and characterization of the monolithic NiO-Al2O3 aerogels. Am J Anal Chem 3:946–949CrossRef Li X, He H, Cui S, Ren L (2012) Synthesis and characterization of the monolithic NiO-Al2O3 aerogels. Am J Anal Chem 3:946–949CrossRef
36.
go back to reference Yoldas BE (1992) In: Hench L, West JKChemical Processing of Advanced Materials. Wiley, New York Yoldas BE (1992) In: Hench L, West JKChemical Processing of Advanced Materials. Wiley, New York
37.
go back to reference Poco JF, Satcher JH, Hrubesh LW (2001) Synthesis of high porosity, monolithic alumina aerogels. J Non-Cryst Solids 285:57–63CrossRef Poco JF, Satcher JH, Hrubesh LW (2001) Synthesis of high porosity, monolithic alumina aerogels. J Non-Cryst Solids 285:57–63CrossRef
38.
go back to reference Zhong Y, Kong Y, Shen X, Cui S, Yi X, Zhang J (2013) Synthesis of a novel porous material comprising carbon/alumina composite aerogels monoliths with high compressive strength. Microporous Mesoporous Mater 172:182–189CrossRef Zhong Y, Kong Y, Shen X, Cui S, Yi X, Zhang J (2013) Synthesis of a novel porous material comprising carbon/alumina composite aerogels monoliths with high compressive strength. Microporous Mesoporous Mater 172:182–189CrossRef
39.
go back to reference Hayase G, Nonomura K, Kanamori K, Maeno A, Kaji H, Nakanishi K (2016) Boehmite nanofiber-polymethylsilsesquioxane core-shell porous monoliths for a thermal insulator under low vacuum conditions. Chem Mater 28:3237–3240CrossRef Hayase G, Nonomura K, Kanamori K, Maeno A, Kaji H, Nakanishi K (2016) Boehmite nanofiber-polymethylsilsesquioxane core-shell porous monoliths for a thermal insulator under low vacuum conditions. Chem Mater 28:3237–3240CrossRef
Metadata
Title
Mechanical strengths and thermal properties of titania-doped alumina aerogels and the application as high-temperature thermal insulator
Authors
Min Gao
Benxue Liu
Ping Zhao
Xibin Yi
Xiaodong Shen
Yue Xu
Publication date
26-06-2019
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2019
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-019-05057-5

Other articles of this Issue 3/2019

Journal of Sol-Gel Science and Technology 3/2019 Go to the issue

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Effect of metal ion addition on structural characteristics and photocatalytic activity of ordered mesoporous titania

Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

The influence of Sc3+ ions on the microstructure, electrical, and gas-sensing properties of Ni–Co–Sc ferrite

Original Paper: Nano-structured materials (particles, fibres, colloids, composites, etc.)

Structural, optical, magnetic and photoelectrochemical properties of (BiFeO3)1−x(Fe3O4)x nanocomposites

Original Paper: Industrial and technological applications of sol–gel and hybrid materials

Study on the surface quality of marble tiles polished with Sol-Gel derived pads

Premium Partners