Skip to main content
Top
Published in: Journal of Iron and Steel Research International 8/2023

22-06-2023 | Original Paper

Mechanisms of interfacial reactions between 316L stainless steel and MnO–SiO2 oxide during isothermal heating

Authors: Cheng-song Liu, Fu-kang Li, Hua Zhang, Jie Li, Yong Wang, Yuan-yuan Lu, Li Xiong, Hong-wei Ni

Published in: Journal of Iron and Steel Research International | Issue 8/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diffusion couple experiments were performed to study the thermodynamic and kinetic mechanisms of interfacial reactions between the 316L stainless steel and the composite MnO–SiO2 oxide during isothermal heating at 1473 K (1200 °C) for 1, 3, 5, and 10 h and at 1173, 1273, 1373, 1473, and 1573 K (900, 1000, 1100, 1200, and 1300 °C) for 3 h. Compositional variations in the 316L stainless steel and the composite MnO–SiO2 oxide in the vicinity of the steel–oxide interface in each diffusion couple specimen were determined. Before and after isothermal heating, thermodynamic equilibria between the oxide and steel at the interface were estimated in accordance with the calculation of the Gibbs free energy change in the interfacial steel–oxide reactions. The diffusion coefficients of Mn, Cr, and Si in 316L stainless steel under different experimental conditions were quantitatively acquired. The results showed that solid-state interfacial reactions occurred between the Cr in the 316L stainless steel and composite MnO–SiO2 oxide during isothermal heating, which resulted in the depletion of Cr and accumulation of Si and Mn in the steel in the vicinity of the steel–oxide interface. The widths of the Cr-depleted zone, Mn-accumulated zone and Si-accumulated zone all showed increasing trends with increasing isothermal heating temperature and time. The average values of the diffusion coefficients of Mn, Cr, and Si in the steel at 1473 K (1200 °C) were 1.21 × 10–14 ± 2.96 × 10–15, 1.69 × 10–14 ± 2.54 × 10–15, and 1.00 × 10–14 ± 1.96 × 10–15 m2 s−1, respectively, and they continued to increase with increasing isothermal heating temperature.
Literature
[1]
go back to reference P. Kaushik, M. Lowry, H. Yin, H. Pielet, Ironmak. Steelmak. 39 (2012) 284–300.CrossRef P. Kaushik, M. Lowry, H. Yin, H. Pielet, Ironmak. Steelmak. 39 (2012) 284–300.CrossRef
[2]
go back to reference C. Temmel, B. Karlsson, N.G. Ingesten, Fatigue Fract. Eng. Mater. Struct. 31 (2008) 466–477.CrossRef C. Temmel, B. Karlsson, N.G. Ingesten, Fatigue Fract. Eng. Mater. Struct. 31 (2008) 466–477.CrossRef
[4]
go back to reference Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang, W. Mao, Metall. Mater. Trans. B 47 (2016) 1024–1034.CrossRef Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang, W. Mao, Metall. Mater. Trans. B 47 (2016) 1024–1034.CrossRef
[5]
go back to reference L. Wang, S. Yang, J. Li, T. Wu, W. Liu, J. Xiong, Metall. Mater. Trans. B 47 (2016) 99–107.CrossRef L. Wang, S. Yang, J. Li, T. Wu, W. Liu, J. Xiong, Metall. Mater. Trans. B 47 (2016) 99–107.CrossRef
[6]
[7]
go back to reference L.T. Wang, S.H. Peng, Q.Y. Zhang, Z.B. Li, Steel Res. Int. 77 (2006) 25–31.CrossRef L.T. Wang, S.H. Peng, Q.Y. Zhang, Z.B. Li, Steel Res. Int. 77 (2006) 25–31.CrossRef
[8]
go back to reference X. Yin, Y.H. Sun, Y.D. Yang, X.F. Bai, X.X. Deng, M. Barati, A. McLean, Ironmak. Steelmak. 43 (2016) 533–540.CrossRef X. Yin, Y.H. Sun, Y.D. Yang, X.F. Bai, X.X. Deng, M. Barati, A. McLean, Ironmak. Steelmak. 43 (2016) 533–540.CrossRef
[9]
go back to reference H. Shibata, K. Kimura, T. Tanaka, S.Y. Kitamura, ISIJ Int. 51 (2011) 1944–1950.CrossRef H. Shibata, K. Kimura, T. Tanaka, S.Y. Kitamura, ISIJ Int. 51 (2011) 1944–1950.CrossRef
[10]
go back to reference K.H. Kim, S.J. Kim, H. Shibata, S.Y. Kitamura, ISIJ Int. 54 (2014) 2144–2153.CrossRef K.H. Kim, S.J. Kim, H. Shibata, S.Y. Kitamura, ISIJ Int. 54 (2014) 2144–2153.CrossRef
[11]
go back to reference Y. Wang, Y. Zhang, L. Zhang, N. Liu, Y. Ren, Steel Res. Int. 92 (2021) 2000605.CrossRef Y. Wang, Y. Zhang, L. Zhang, N. Liu, Y. Ren, Steel Res. Int. 92 (2021) 2000605.CrossRef
[12]
go back to reference W. Wang, L. Zhang, Y. Luo, Y. Ren, X. Sun, Ironmak. Steelmak. 49 (2022) 472–483.CrossRef W. Wang, L. Zhang, Y. Luo, Y. Ren, X. Sun, Ironmak. Steelmak. 49 (2022) 472–483.CrossRef
[13]
go back to reference M. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. A 50 (2019) 863–873.CrossRef M. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. A 50 (2019) 863–873.CrossRef
[14]
go back to reference W. Gan, C. Liu, K. Liao, H. Zhang, H. Ni, Metall. Mater. Trans. B 53 (2022) 485–502.CrossRef W. Gan, C. Liu, K. Liao, H. Zhang, H. Ni, Metall. Mater. Trans. B 53 (2022) 485–502.CrossRef
[15]
go back to reference W. Gan, C. Liu, K. Liao, H. Zhang, H. Ni, Metall. Mater. Trans. B 53 (2022) 2553–2569.CrossRef W. Gan, C. Liu, K. Liao, H. Zhang, H. Ni, Metall. Mater. Trans. B 53 (2022) 2553–2569.CrossRef
[16]
go back to reference T. Michler, J. Naumann, M. Hock, K. Berreth, M.P. Balogh, E. Sattler, Mater. Sci. Eng. A 628 (2015) 252–261.CrossRef T. Michler, J. Naumann, M. Hock, K. Berreth, M.P. Balogh, E. Sattler, Mater. Sci. Eng. A 628 (2015) 252–261.CrossRef
[17]
[18]
go back to reference S. Guo, E.H. Han, H.T. Wang, Z.M. Zhang, J.Q. Wang, Acta Metall. Sin. 53 (2017) 455–464. S. Guo, E.H. Han, H.T. Wang, Z.M. Zhang, J.Q. Wang, Acta Metall. Sin. 53 (2017) 455–464.
[19]
go back to reference D. Jin, D.J. Tian, J.H. Li, M. Sakane, Fatigue Fract. Eng. Mater. Struct. 39 (2016) 850–858.CrossRef D. Jin, D.J. Tian, J.H. Li, M. Sakane, Fatigue Fract. Eng. Mater. Struct. 39 (2016) 850–858.CrossRef
[20]
go back to reference F. Yan, W. Xiong, E. Faierson, G.B. Olson, Scripta Mater. 155 (2018) 104–108.CrossRef F. Yan, W. Xiong, E. Faierson, G.B. Olson, Scripta Mater. 155 (2018) 104–108.CrossRef
[21]
[22]
go back to reference K. Takano, R. Nakao, S. Fukumoto, T. Tsuchiyama, S. Takaki, Tetsu-to-Hagane 89 (2003) 616–622.CrossRef K. Takano, R. Nakao, S. Fukumoto, T. Tsuchiyama, S. Takaki, Tetsu-to-Hagane 89 (2003) 616–622.CrossRef
[23]
go back to reference Y. Ren, L. Zhang, P.C. Pistorius, Metall. Mater. Trans. B 48 (2017) 2281–2292.CrossRef Y. Ren, L. Zhang, P.C. Pistorius, Metall. Mater. Trans. B 48 (2017) 2281–2292.CrossRef
[24]
go back to reference M. Hino, K. Ito, Thermodynamic data for steelmaking, Tohoku University Press, Sendai, Japan, 2010. M. Hino, K. Ito, Thermodynamic data for steelmaking, Tohoku University Press, Sendai, Japan, 2010.
[25]
go back to reference X.H. Huang, Principles of iron and steel metallurgy, Metallurgical Industry Press, Beijing, China, 2013. X.H. Huang, Principles of iron and steel metallurgy, Metallurgical Industry Press, Beijing, China, 2013.
[26]
go back to reference G. Neumann, C. Tuijn, Self-diffusion and impurity diffusion in pure metals: handbook of experimental data, Elsevier, Amsterdam, Netherlands, 2009. G. Neumann, C. Tuijn, Self-diffusion and impurity diffusion in pure metals: handbook of experimental data, Elsevier, Amsterdam, Netherlands, 2009.
[27]
Metadata
Title
Mechanisms of interfacial reactions between 316L stainless steel and MnO–SiO2 oxide during isothermal heating
Authors
Cheng-song Liu
Fu-kang Li
Hua Zhang
Jie Li
Yong Wang
Yuan-yuan Lu
Li Xiong
Hong-wei Ni
Publication date
22-06-2023
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 8/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-01013-4

Other articles of this Issue 8/2023

Journal of Iron and Steel Research International 8/2023 Go to the issue

Premium Partners