Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 3-4/2020

12-03-2020 | ORIGINAL ARTICLE

Membranes for hydrogen separation: a significant review

Authors: Norazlianie Sazali, Mohamad Azuwa Mohamed, Wan Norharyati Wan Salleh

Published in: The International Journal of Advanced Manufacturing Technology | Issue 3-4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogen (H2)-selective membranes involve significantly less energy and generally a better way to manage them. Partial inlet/outlet pressure of H2, as well as temperature, are the best parameters for membrane processes. Membrane processes are appropriate for portable applications and small scale as opposed to other separation techniques. The membrane can also be performed at different pressure and temperature ranges. The critical purpose of the separation membrane is the suitable usage in membrane reactors that permit the purification and production of synchronous H2. Observations of alterations in the structural and chemical properties have been commonly performed to understand the process by which polymers degrade. The validity of each observational procedure depends primarily on the test material and type of degradation. An appropriate method for the characterization of polymers can often be utilized to examine the properties of degradation. The service life of a polymer depends strongly on the conditions to which the material is subjected. On the other hand, the stability of the material, including nanocomposite polymer blends, often dictates its usefulness. Thus, this review was aimed to evaluate the degradation of nanocomposite polymer blends, with specific focus on the role of the fillers and the composition of the blends. The factors that could significantly affect the degradation of the same were the presence of a filler, as well as the morphology and composition of the blends.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wisniak J, Thomas Graham I (2013) Contributions to thermodynamics, chemistry, and the occlusion of gases. Educación Química 24:316–325 Wisniak J, Thomas Graham I (2013) Contributions to thermodynamics, chemistry, and the occlusion of gases. Educación Química 24:316–325
2.
go back to reference Spillman R (1995) Chapter 13 Economics of gas separation membrane processes. In: Noble RD, Stern SA (eds) Membrane Science and Technology. Elsevier, pp 589–667 Spillman R (1995) Chapter 13 Economics of gas separation membrane processes. In: Noble RD, Stern SA (eds) Membrane Science and Technology. Elsevier, pp 589–667
3.
go back to reference Wang Y, Ma X, Ghanem BS, Alghunaimi F, Pinnau I, Han Y (2018) Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater Today Nano 3:69–95 Wang Y, Ma X, Ghanem BS, Alghunaimi F, Pinnau I, Han Y (2018) Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater Today Nano 3:69–95
4.
go back to reference Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD (2017) 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50:7809–7843 Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD (2017) 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50:7809–7843
5.
go back to reference Cheng XQ, Wang ZX, Jiang X, Li T, Lau CH, Guo Z, Ma J, Shao L (2018) Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials. Prog Mater Sci 92:258–283 Cheng XQ, Wang ZX, Jiang X, Li T, Lau CH, Guo Z, Ma J, Shao L (2018) Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials. Prog Mater Sci 92:258–283
6.
go back to reference Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41 Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41
7.
go back to reference Robeson LM (2016) Polymeric membranes for gas separation, in: reference module in materials science and materials engineering. Elsevier Robeson LM (2016) Polymeric membranes for gas separation, in: reference module in materials science and materials engineering. Elsevier
8.
go back to reference Sunarso J, Hashim SS, Lin YS, Liu SM (2017) Membranes for helium recovery: an overview on the context, materials and future directions. Sep Purif Technol 176:335–383 Sunarso J, Hashim SS, Lin YS, Liu SM (2017) Membranes for helium recovery: an overview on the context, materials and future directions. Sep Purif Technol 176:335–383
9.
go back to reference Wang N, Wang L, Zhang R, Li J, Zhao C, Wu T, Ji S (2015) Highly stable “pore-filling” tubular composite membrane by self-crosslinkable hyperbranched polymers for toluene/n-heptane separation. J Membr Sci 474:263–272 Wang N, Wang L, Zhang R, Li J, Zhao C, Wu T, Ji S (2015) Highly stable “pore-filling” tubular composite membrane by self-crosslinkable hyperbranched polymers for toluene/n-heptane separation. J Membr Sci 474:263–272
10.
go back to reference Liu J, Hou X, Park HB, Lin H (2016) High-performance polymers for membrane CO2/N2 separation. Chem Eur J 22:15980–15990 Liu J, Hou X, Park HB, Lin H (2016) High-performance polymers for membrane CO2/N2 separation. Chem Eur J 22:15980–15990
11.
go back to reference Sazali N, Salleh WNW, Ismail AF, Nordin NAHM, Ismail NH, Mohamed MA, Aziz F, Yusof N, Jaafar J (2018) Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance. J Nat Gas Sci Eng 49:376–384 Sazali N, Salleh WNW, Ismail AF, Nordin NAHM, Ismail NH, Mohamed MA, Aziz F, Yusof N, Jaafar J (2018) Incorporation of thermally labile additives in carbon membrane development for superior gas permeation performance. J Nat Gas Sci Eng 49:376–384
12.
go back to reference Sazali N, Salleh WNW, Ismail AF, Wong KC, Iwamoto Y (2018) Exploiting pyrolysis protocols on BTDA-TDI/MDI (P84) polyimide/nanocrystalline cellulose carbon membrane for gas separations. J Appl Polym Sci Sazali N, Salleh WNW, Ismail AF, Wong KC, Iwamoto Y (2018) Exploiting pyrolysis protocols on BTDA-TDI/MDI (P84) polyimide/nanocrystalline cellulose carbon membrane for gas separations. J Appl Polym Sci
13.
go back to reference Mohamed MA, Salleh WNW, Jaafar J, Asri SEAM, Ismail AF (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5:29842–29849 Mohamed MA, Salleh WNW, Jaafar J, Asri SEAM, Ismail AF (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5:29842–29849
14.
go back to reference Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S (2015) Recent developments in membranes for efficient hydrogen purification. J Membr Sci 495:130–168 Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S (2015) Recent developments in membranes for efficient hydrogen purification. J Membr Sci 495:130–168
15.
go back to reference Ogundare SA, Moodley V, van Zyl WE (2017) Nanocrystalline cellulose isolated from discarded cigarette filters. Carbohydr Polym 175:273–281 Ogundare SA, Moodley V, van Zyl WE (2017) Nanocrystalline cellulose isolated from discarded cigarette filters. Carbohydr Polym 175:273–281
16.
go back to reference Ilyas RA, Sapuan SM, Ishak MR (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 181:1038–1051 Ilyas RA, Sapuan SM, Ishak MR (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 181:1038–1051
17.
go back to reference Nowsheen G, Archana B-L, Dhanjay J (2015) Biodegradable polymer blends: miscibility, physicochemical properties and biological response of scaffolds. Polym Int 64:1289–1302 Nowsheen G, Archana B-L, Dhanjay J (2015) Biodegradable polymer blends: miscibility, physicochemical properties and biological response of scaffolds. Polym Int 64:1289–1302
18.
go back to reference Sazali N, Salleh WNW, Ismail AF, Kadirgama K, Othman FEC, Ismail NH (2018) Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment. Int J Hydrog Energy Sazali N, Salleh WNW, Ismail AF, Kadirgama K, Othman FEC, Ismail NH (2018) Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment. Int J Hydrog Energy
19.
go back to reference Sazali N, Salleh WNW, Ismail AF, Ismail NH, Yusof N, Aziz F, Jaafar J, Kadirgama K (2018) Influence of intermediate layers in tubular carbon membrane for gas separation performance. Int J Hydrog Energy Sazali N, Salleh WNW, Ismail AF, Ismail NH, Yusof N, Aziz F, Jaafar J, Kadirgama K (2018) Influence of intermediate layers in tubular carbon membrane for gas separation performance. Int J Hydrog Energy
20.
go back to reference Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689 Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689
21.
go back to reference Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy 34:3589–3603 Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy 34:3589–3603
22.
go back to reference Muradov NZ, Veziroǧlu TN (2005) From hydrocarbon to hydrogen–carbon to hydrogen economy. Int J Hydrog Energy 30:225–237 Muradov NZ, Veziroǧlu TN (2005) From hydrocarbon to hydrogen–carbon to hydrogen economy. Int J Hydrog Energy 30:225–237
23.
go back to reference Hames Y, Kaya K, Baltacioglu E, Turksoy A (2018) Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int J Hydrog Energy 43:10810–10821 Hames Y, Kaya K, Baltacioglu E, Turksoy A (2018) Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int J Hydrog Energy 43:10810–10821
24.
go back to reference Grewe T, Meggouh M, Tüysüz H (2016) Nanocatalysts for solar water splitting and a perspective on hydrogen economy. Chem Asian J 11:22–42 Grewe T, Meggouh M, Tüysüz H (2016) Nanocatalysts for solar water splitting and a perspective on hydrogen economy. Chem Asian J 11:22–42
25.
go back to reference Hashim SS, Mohamed AR, Bhatia S (2011) Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew Sust Energ Rev 15:1284–1293 Hashim SS, Mohamed AR, Bhatia S (2011) Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew Sust Energ Rev 15:1284–1293
26.
go back to reference Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK (2018) Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers Manag 165:602–627 Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK (2018) Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers Manag 165:602–627
27.
go back to reference Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S (2017) Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process Process Intensif 121:24–49 Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S (2017) Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process Process Intensif 121:24–49
28.
go back to reference Bernardo G, Araújo T, da Silva Lopes T, Sousa J, Mendes A (2019) Recent advances in membrane technologies for hydrogen purification. Int J Hydrog Energy Bernardo G, Araújo T, da Silva Lopes T, Sousa J, Mendes A (2019) Recent advances in membrane technologies for hydrogen purification. Int J Hydrog Energy
29.
go back to reference Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrog Energy 45:3847–3869 Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrog Energy 45:3847–3869
30.
go back to reference Chehade G, Lytle S, Ishaq H, Dincer I (2020) Hydrogen production by microwave based plasma dissociation of water. Fuel 264:116831 Chehade G, Lytle S, Ishaq H, Dincer I (2020) Hydrogen production by microwave based plasma dissociation of water. Fuel 264:116831
31.
go back to reference Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81 Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81
32.
go back to reference Castel C, Wang L, Corriou JP, Favre E (2018) Steady vs unsteady membrane gas separation processes. Chem Eng Sci 183:136–147 Castel C, Wang L, Corriou JP, Favre E (2018) Steady vs unsteady membrane gas separation processes. Chem Eng Sci 183:136–147
33.
go back to reference Collier A, Wang H, Zi Yuan X, Zhang J, Wilkinson DP (2006) Degradation of polymer electrolyte membranes. Int J Hydrog Energy 31:1838–1854 Collier A, Wang H, Zi Yuan X, Zhang J, Wilkinson DP (2006) Degradation of polymer electrolyte membranes. Int J Hydrog Energy 31:1838–1854
34.
go back to reference Burra KRG, Bassioni G, Gupta AK (2018) Catalytic transformation of H2S for H2 production. Int J Hydrog Energy 43:22852–22860 Burra KRG, Bassioni G, Gupta AK (2018) Catalytic transformation of H2S for H2 production. Int J Hydrog Energy 43:22852–22860
35.
go back to reference Yin H, Yip A (2017) A review on the production and purification of biomass-derived hydrogen using emerging membrane technologies. Catalysts 7:297 Yin H, Yip A (2017) A review on the production and purification of biomass-derived hydrogen using emerging membrane technologies. Catalysts 7:297
36.
go back to reference Ma C, Yu J, Wang B, Song Z, Xiang J, Hu S, Su S, Sun L (2016) Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: a review. Renew Sust Energ Rev 61:433–450 Ma C, Yu J, Wang B, Song Z, Xiang J, Hu S, Su S, Sun L (2016) Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: a review. Renew Sust Energ Rev 61:433–450
37.
go back to reference Wassie SA, Cloete S, Spallina V, Gallucci F, Amini S, van Sint Annaland M (2018) Techno-economic assessment of membrane-assisted gas switching reforming for pure H2 production with CO2 capture. Int J Greenhouse Gas Control 72:163–174 Wassie SA, Cloete S, Spallina V, Gallucci F, Amini S, van Sint Annaland M (2018) Techno-economic assessment of membrane-assisted gas switching reforming for pure H2 production with CO2 capture. Int J Greenhouse Gas Control 72:163–174
38.
go back to reference Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conference Papers in Energy 2013:9 Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conference Papers in Energy 2013:9
39.
go back to reference Kourde-Hanafi Y, Loulergue P, Szymczyk A, Van der Bruggen B, Nachtnebel M, Rabiller-Baudry M, Audic J-L, Pölt P, Baddari K (2017) Influence of PVP content on degradation of PES/PVP membranes: insights from characterization of membranes with controlled composition. J Membr Sci 533:261–269 Kourde-Hanafi Y, Loulergue P, Szymczyk A, Van der Bruggen B, Nachtnebel M, Rabiller-Baudry M, Audic J-L, Pölt P, Baddari K (2017) Influence of PVP content on degradation of PES/PVP membranes: insights from characterization of membranes with controlled composition. J Membr Sci 533:261–269
40.
go back to reference Maya EM, Lozano AE, de Abajo J, de la Campa JG (2007) Chemical modification of copolyimides with bulky pendent groups: effect of modification on solubility and thermal stability. Polym Degrad Stab 92:2294–2299 Maya EM, Lozano AE, de Abajo J, de la Campa JG (2007) Chemical modification of copolyimides with bulky pendent groups: effect of modification on solubility and thermal stability. Polym Degrad Stab 92:2294–2299
41.
go back to reference Zhang B, Li L, Wang C, Pang J, Zhang S, Jian X, Wang T (2015) Effect of membrane-casting parameters on the microstructure and gas permeation of carbon membranes. RSC Adv 5:60345–60353 Zhang B, Li L, Wang C, Pang J, Zhang S, Jian X, Wang T (2015) Effect of membrane-casting parameters on the microstructure and gas permeation of carbon membranes. RSC Adv 5:60345–60353
42.
go back to reference Huertas RM, Tena A, Lozano AE, de Abajo J, de la Campa JG, Maya EM (2013) Thermal degradation of crosslinked copolyimide membranes to obtain productive gas separation membranes. Polym Degrad Stab 98:743–750 Huertas RM, Tena A, Lozano AE, de Abajo J, de la Campa JG, Maya EM (2013) Thermal degradation of crosslinked copolyimide membranes to obtain productive gas separation membranes. Polym Degrad Stab 98:743–750
43.
go back to reference Choi W, Ingole PG, Park J-S, Lee D-W, Kim J-H, Lee H-K (2015) H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method. Chem Eng Res Des 102:297–306 Choi W, Ingole PG, Park J-S, Lee D-W, Kim J-H, Lee H-K (2015) H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method. Chem Eng Res Des 102:297–306
44.
go back to reference Yun J, Chen L, Zhang X, Zhao H, Wen Z, Zhang C (2017) The effects of silicon and ferrocene on the char formation of modified novolac resin with high char yield. Polym Degrad Stab 139:97–106 Yun J, Chen L, Zhang X, Zhao H, Wen Z, Zhang C (2017) The effects of silicon and ferrocene on the char formation of modified novolac resin with high char yield. Polym Degrad Stab 139:97–106
45.
go back to reference Garnier J, Dufils P-E, Vinas J, Vanderveken Y, van Herk A, Lacroix-Desmazes P (2012) Synthesis of poly(vinylidene chloride)-based composite latexes by emulsion polymerization from epoxy functional seeds for improved thermal stability. Polym Degrad Stab 97:170–177 Garnier J, Dufils P-E, Vinas J, Vanderveken Y, van Herk A, Lacroix-Desmazes P (2012) Synthesis of poly(vinylidene chloride)-based composite latexes by emulsion polymerization from epoxy functional seeds for improved thermal stability. Polym Degrad Stab 97:170–177
46.
go back to reference Moharir RV, Kumar S (2018) Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: a comprehensive review. J Clean Prod Moharir RV, Kumar S (2018) Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: a comprehensive review. J Clean Prod
47.
go back to reference Scaffaro R, Botta L, La Mantia FP, Gleria M, Bertani R, Samperi F, Scaltro G (2006) Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends. II: effect of different polyamides on the properties of extruded samples. Polym Degrad Stab 91:2265–2274 Scaffaro R, Botta L, La Mantia FP, Gleria M, Bertani R, Samperi F, Scaltro G (2006) Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends. II: effect of different polyamides on the properties of extruded samples. Polym Degrad Stab 91:2265–2274
48.
go back to reference Scaffaro R, Botta L, La Mantia FP, Magagnini P, Acierno D, Gleria M, Bertani R (2005) Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends. I: preliminary study in a batch mixer. Polym Degrad Stab 90:234–243 Scaffaro R, Botta L, La Mantia FP, Magagnini P, Acierno D, Gleria M, Bertani R (2005) Effect of adding new phosphazene compounds to poly(butylene terephthalate)/polyamide blends. I: preliminary study in a batch mixer. Polym Degrad Stab 90:234–243
49.
go back to reference Hunger K, Schmeling N, Jeazet HBT, Janiak C, Staudt C, Kleinermanns K (2012) Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes (Basel) 2:727–763 Hunger K, Schmeling N, Jeazet HBT, Janiak C, Staudt C, Kleinermanns K (2012) Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes (Basel) 2:727–763
50.
go back to reference de Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155 de Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155
51.
go back to reference Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G (2017) Lifetime prediction of biodegradable polymers. Prog Polym Sci 71:144–189 Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G (2017) Lifetime prediction of biodegradable polymers. Prog Polym Sci 71:144–189
52.
go back to reference Lafyatis DS, Tung J, Foley HC (1991) Poly(furfuryl alcohol)-derived carbon molecular sieves: dependence of adsorptive properties on carbonization temperature, time, and poly(ethylene glycol) additives. Ind Eng Chem Res 30:865–873 Lafyatis DS, Tung J, Foley HC (1991) Poly(furfuryl alcohol)-derived carbon molecular sieves: dependence of adsorptive properties on carbonization temperature, time, and poly(ethylene glycol) additives. Ind Eng Chem Res 30:865–873
53.
go back to reference Allen NS, Chirinis-Padron A, Henman TJ (1985) The photo-stabilisation of polypropylene: a review. Polym Degrad Stab 13:31–76 Allen NS, Chirinis-Padron A, Henman TJ (1985) The photo-stabilisation of polypropylene: a review. Polym Degrad Stab 13:31–76
54.
go back to reference Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276 Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276
55.
go back to reference Alaerts L, Augustinus M, Van Acker K (2018) Impact of bio-based plastics on current recycling of plastics. Sustainability 10:1487 Alaerts L, Augustinus M, Van Acker K (2018) Impact of bio-based plastics on current recycling of plastics. Sustainability 10:1487
56.
go back to reference Nakajima H, Dijkstra P, Loos K (2017) The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers 9:523 Nakajima H, Dijkstra P, Loos K (2017) The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers 9:523
57.
go back to reference Sadykov VA, Krasnov AV, Fedorova YE, Lukashevich AI, Bespalko YN, Eremeev NF, Skriabin PI, Valeev KR, Smorygo OL (2018) Novel nanocomposite materials for oxygen and hydrogen separation membranes. Int J Hydrog Energy Sadykov VA, Krasnov AV, Fedorova YE, Lukashevich AI, Bespalko YN, Eremeev NF, Skriabin PI, Valeev KR, Smorygo OL (2018) Novel nanocomposite materials for oxygen and hydrogen separation membranes. Int J Hydrog Energy
58.
go back to reference Soares RMD, Siqueira NM, Prabhakaram MP, Ramakrishna S (2018) Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng C 92:969–982 Soares RMD, Siqueira NM, Prabhakaram MP, Ramakrishna S (2018) Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng C 92:969–982
59.
go back to reference Kawaguchi H, Ogino C, Kondo A (2017) Microbial conversion of biomass into bio-based polymers. Bioresour Technol 245:1664–1673 Kawaguchi H, Ogino C, Kondo A (2017) Microbial conversion of biomass into bio-based polymers. Bioresour Technol 245:1664–1673
60.
go back to reference Hu J, Wang Z, Lu Z, Chen C, Shi M, Wang J, Zhao E, Zeng K, Yang G (2017) Bio-based adenine-containing high performance polyimide. Polymer 119:59–65 Hu J, Wang Z, Lu Z, Chen C, Shi M, Wang J, Zhao E, Zeng K, Yang G (2017) Bio-based adenine-containing high performance polyimide. Polymer 119:59–65
61.
go back to reference Rikkou MD, Patrickios CS (2011) Polymers prepared using cleavable initiators: synthesis, characterization and degradation. Prog Polym Sci 36:1079–1097 Rikkou MD, Patrickios CS (2011) Polymers prepared using cleavable initiators: synthesis, characterization and degradation. Prog Polym Sci 36:1079–1097
62.
go back to reference Pesiri DR, Jorgensen B, Dye RC (2003) Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J Membr Sci 218:11–18 Pesiri DR, Jorgensen B, Dye RC (2003) Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J Membr Sci 218:11–18
63.
go back to reference Sazali N, Salleh WNW, Ismail AF (2017) Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation. Int J Hydrog Energy 42:9952–9957 Sazali N, Salleh WNW, Ismail AF (2017) Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation. Int J Hydrog Energy 42:9952–9957
64.
go back to reference Aguilar-Vega M, Paul DR (1993) Gas transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group. J Polym Sci B Polym Phys 31:1599–1610 Aguilar-Vega M, Paul DR (1993) Gas transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group. J Polym Sci B Polym Phys 31:1599–1610
65.
go back to reference Takht Ravanchi M, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination 235:199–244 Takht Ravanchi M, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination 235:199–244
66.
go back to reference Chung T-S, Shao L, Tin PS (2006) Surface modification of polyimide membranes by diamines for H2 and CO2 separation. Macromol Rapid Commun 27:998–1003 Chung T-S, Shao L, Tin PS (2006) Surface modification of polyimide membranes by diamines for H2 and CO2 separation. Macromol Rapid Commun 27:998–1003
67.
go back to reference Hosseini SS, Teoh MM, Chung TS (2008) Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–1603 Hosseini SS, Teoh MM, Chung TS (2008) Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–1603
68.
go back to reference Salleh WNW, Ismail AF (2011) Carbon hollow fiber membranes derived from PEI/PVP for gas separation. Sep Purif Technol 80:541–548 Salleh WNW, Ismail AF (2011) Carbon hollow fiber membranes derived from PEI/PVP for gas separation. Sep Purif Technol 80:541–548
69.
go back to reference Vu DQ, Koros WJ, Miller SJ (2002) High pressure CO2/CH4 separation using carbon molecular sieve hollow Fiber membranes. Ind Eng Chem Res 41:367–380 Vu DQ, Koros WJ, Miller SJ (2002) High pressure CO2/CH4 separation using carbon molecular sieve hollow Fiber membranes. Ind Eng Chem Res 41:367–380
70.
go back to reference Lee RJ, Jawad ZA, Ahmad AL, Ngo JQ, Chua HB (2017) Improvement of CO2/N2 separation performance by polymer matrix cellulose acetate butyrate. IOP Conf Ser Mater Sci Eng 206:012072 Lee RJ, Jawad ZA, Ahmad AL, Ngo JQ, Chua HB (2017) Improvement of CO2/N2 separation performance by polymer matrix cellulose acetate butyrate. IOP Conf Ser Mater Sci Eng 206:012072
71.
go back to reference Achoundong CSK, Bhuwania N, Burgess SK, Karvan O, Johnson JR, Koros WJ (2013) Silane modification of cellulose acetate dense films as materials for acid gas removal. Macromolecules 46:5584–5594 Achoundong CSK, Bhuwania N, Burgess SK, Karvan O, Johnson JR, Koros WJ (2013) Silane modification of cellulose acetate dense films as materials for acid gas removal. Macromolecules 46:5584–5594
72.
go back to reference Perry JD, Nagai K, Koros WJ (2011) Polymer membranes for hydrogen separations. MRS Bull 31:745–749 Perry JD, Nagai K, Koros WJ (2011) Polymer membranes for hydrogen separations. MRS Bull 31:745–749
73.
go back to reference Henis JMS, Tripodi MK (1981) Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 8:233–246 Henis JMS, Tripodi MK (1981) Composite hollow fiber membranes for gas separation: the resistance model approach. J Membr Sci 8:233–246
74.
go back to reference Liang CZ, Chung T-S, Lai J-Y (2019) A review of polymeric composite membranes for gas separation and energy production. Prog Polym Sci 97:101141 Liang CZ, Chung T-S, Lai J-Y (2019) A review of polymeric composite membranes for gas separation and energy production. Prog Polym Sci 97:101141
75.
go back to reference Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250 Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250
76.
go back to reference Demirbaş A (2005) Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis. Energy Sources 27:1313–1319 Demirbaş A (2005) Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis. Energy Sources 27:1313–1319
77.
go back to reference Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98:1898–1907 Hottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98:1898–1907
78.
go back to reference Tachibana Y, Yamahata M, Ichihara H, Kasuya K-i (2017) Biodegradability of polyesters comprising a bio-based monomer derived from furfural. Polym Degrad Stab 146:121–125 Tachibana Y, Yamahata M, Ichihara H, Kasuya K-i (2017) Biodegradability of polyesters comprising a bio-based monomer derived from furfural. Polym Degrad Stab 146:121–125
79.
go back to reference Bounaceur R, Berger E, Pfister M, Ramirez Santos AA, Favre E (2017) Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool. J Membr Sci 523:77–91 Bounaceur R, Berger E, Pfister M, Ramirez Santos AA, Favre E (2017) Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool. J Membr Sci 523:77–91
80.
go back to reference Matteucci S, Yampolskii Y, Freeman BD, Pinnau I (2006) Transport of gases and vapors in glassy and rubbery polymers, in: materials science of membranes for gas and vapor separation. John Wiley & Sons, Ltd, pp 1–47 Matteucci S, Yampolskii Y, Freeman BD, Pinnau I (2006) Transport of gases and vapors in glassy and rubbery polymers, in: materials science of membranes for gas and vapor separation. John Wiley & Sons, Ltd, pp 1–47
81.
go back to reference Yong WF, Li FY, Chung T-S, Tong YW (2013) Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. J Mater Chem A 1:13914–13925 Yong WF, Li FY, Chung T-S, Tong YW (2013) Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. J Mater Chem A 1:13914–13925
82.
go back to reference Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sust Energ Rev 14:233–248 Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sust Energ Rev 14:233–248
83.
go back to reference Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou ΕV (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149:536–542 Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou ΕV (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149:536–542
84.
go back to reference Marczewski M, Kamińska E, Marczewska H, Godek M, Rokicki G, Sokołowski J (2013) Catalytic decomposition of polystyrene. The role of acid and basic active centers. Appl Catal B Environ 129:236–246 Marczewski M, Kamińska E, Marczewska H, Godek M, Rokicki G, Sokołowski J (2013) Catalytic decomposition of polystyrene. The role of acid and basic active centers. Appl Catal B Environ 129:236–246
85.
go back to reference Zhang X, Lei H, Zhu L, Zhu X, Qian M, Yadavalli G, Wu J, Chen S (2016) Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresour Technol 220:233–238 Zhang X, Lei H, Zhu L, Zhu X, Qian M, Yadavalli G, Wu J, Chen S (2016) Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresour Technol 220:233–238
86.
go back to reference Lawrence J, Yamaguchi T (2008) The degradation mechanism of sulfonated poly(arylene ether sulfone)s in an oxidative environment. J Membr Sci 325:633–640 Lawrence J, Yamaguchi T (2008) The degradation mechanism of sulfonated poly(arylene ether sulfone)s in an oxidative environment. J Membr Sci 325:633–640
87.
go back to reference Klapiszewski Ł, Bula K, Sobczak M, Jesionowski T (2016) Influence of processing conditions on the thermal stability and mechanical properties of PP/silica-lignin composites. Int J Polym Sci 2016:9 Klapiszewski Ł, Bula K, Sobczak M, Jesionowski T (2016) Influence of processing conditions on the thermal stability and mechanical properties of PP/silica-lignin composites. Int J Polym Sci 2016:9
88.
go back to reference Parcheta P, Koltsov I, Datta J (2018) Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis. Polym Degrad Stab 151:90–99 Parcheta P, Koltsov I, Datta J (2018) Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis. Polym Degrad Stab 151:90–99
89.
go back to reference Nisar J, Ali G, Ullah N, Awan IA, Iqbal M, Shah A, Sirajuddin, Sayed M, Mahmood T, Khan MS (2018) Pyrolysis of waste tire rubber: influence of temperature on pyrolysates yield. J Environ Chem Eng 6:3469–3473 Nisar J, Ali G, Ullah N, Awan IA, Iqbal M, Shah A, Sirajuddin, Sayed M, Mahmood T, Khan MS (2018) Pyrolysis of waste tire rubber: influence of temperature on pyrolysates yield. J Environ Chem Eng 6:3469–3473
90.
go back to reference Li H, Jiang X, Cui H, Wang F, Zhang X, Yang L, Wang C (2015) Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive. J Anal Appl Pyrolysis 115:37–42 Li H, Jiang X, Cui H, Wang F, Zhang X, Yang L, Wang C (2015) Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive. J Anal Appl Pyrolysis 115:37–42
91.
go back to reference Miranda M, Pinto F, Gulyurtlu I, Cabrita I (2013) Pyrolysis of rubber tyre wastes: a kinetic study. Fuel 103:542–552 Miranda M, Pinto F, Gulyurtlu I, Cabrita I (2013) Pyrolysis of rubber tyre wastes: a kinetic study. Fuel 103:542–552
92.
go back to reference Tan K, Li C, Meng H, Wang Z (2009) Preparation and characterization of thermoplastic elastomer of poly(vinyl chloride) and chlorinated waste rubber. Polym Test 28:2–7 Tan K, Li C, Meng H, Wang Z (2009) Preparation and characterization of thermoplastic elastomer of poly(vinyl chloride) and chlorinated waste rubber. Polym Test 28:2–7
93.
go back to reference Yao Q, Wilkie CA (1999) Thermal degradation of blends of polystyrene and poly(sodium 4-styrenesulfonate) and the copolymer, poly(styrene-co-sodium 4-styrenesulfonate). Polym Degrad Stab 66:379–384 Yao Q, Wilkie CA (1999) Thermal degradation of blends of polystyrene and poly(sodium 4-styrenesulfonate) and the copolymer, poly(styrene-co-sodium 4-styrenesulfonate). Polym Degrad Stab 66:379–384
94.
go back to reference Naffakh M, Ellis G, Gómez MA, Marco C (1999) Thermal decomposition of technological polymer blends 1. Poly(aryl ether ether ketone) with a thermotropic liquid crystalline polymer. Polym Degrad Stab 66:405–413 Naffakh M, Ellis G, Gómez MA, Marco C (1999) Thermal decomposition of technological polymer blends 1. Poly(aryl ether ether ketone) with a thermotropic liquid crystalline polymer. Polym Degrad Stab 66:405–413
95.
go back to reference Snegirev AY, Talalov VA, Stepanov VV, Korobeinichev OP, Gerasimov IE, Shmakov AG (2017) Autocatalysis in thermal decomposition of polymers. Polym Degrad Stab 137:151–161 Snegirev AY, Talalov VA, Stepanov VV, Korobeinichev OP, Gerasimov IE, Shmakov AG (2017) Autocatalysis in thermal decomposition of polymers. Polym Degrad Stab 137:151–161
96.
go back to reference Mei W, Du Y, Wu T, Gao F, Wang B, Duan J, Zhou J, Zhou R (2018) High-flux CHA zeolite membranes for H2 separations. J Membr Sci 565:358–369 Mei W, Du Y, Wu T, Gao F, Wang B, Duan J, Zhou J, Zhou R (2018) High-flux CHA zeolite membranes for H2 separations. J Membr Sci 565:358–369
97.
go back to reference Sánchez-Laínez J, Zornoza B, Téllez C, Coronas J (2016) On the chemical filler–polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation. J Mater Chem A 4:14334–14341 Sánchez-Laínez J, Zornoza B, Téllez C, Coronas J (2016) On the chemical filler–polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation. J Mater Chem A 4:14334–14341
98.
go back to reference Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400 Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400
99.
go back to reference Utracki LA (2002) Compatibilization of polymer blends. Can J Chem Eng 80:1008–1016 Utracki LA (2002) Compatibilization of polymer blends. Can J Chem Eng 80:1008–1016
100.
go back to reference Barić B, Kovačić T (1998) Isothermal degradation of PVC/MBS blends. J Therm Anal Calorim 54:753–764 Barić B, Kovačić T (1998) Isothermal degradation of PVC/MBS blends. J Therm Anal Calorim 54:753–764
101.
go back to reference Ulf B, Alexandra L Micro-macroporous composite materials – preparation techniques and selected applications: a review. Adv Eng Mater:1800252 Ulf B, Alexandra L Micro-macroporous composite materials – preparation techniques and selected applications: a review. Adv Eng Mater:1800252
102.
go back to reference Chandavasu C, Xanthos M, Sirkar KK, Gogos CG (2003) Fabrication of microporous polymeric membranes by melt processing of immiscible blends. J Membr Sci 211:167–175 Chandavasu C, Xanthos M, Sirkar KK, Gogos CG (2003) Fabrication of microporous polymeric membranes by melt processing of immiscible blends. J Membr Sci 211:167–175
103.
go back to reference Tambasco M, Lipson JEG, Higgins JS (2004) New routes to the characterization and prediction of polymer blend properties. Macromolecules 37:9219–9230 Tambasco M, Lipson JEG, Higgins JS (2004) New routes to the characterization and prediction of polymer blend properties. Macromolecules 37:9219–9230
104.
go back to reference Kim YK, Park HB, Lee YM (2004) Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J Membr Sci 243:9–17 Kim YK, Park HB, Lee YM (2004) Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. J Membr Sci 243:9–17
105.
go back to reference Shirin S, Ahmad A (2009) A review on ternary immiscible polymer blends: morphology and effective parameters. Polym Adv Technol 20:433–447 Shirin S, Ahmad A (2009) A review on ternary immiscible polymer blends: morphology and effective parameters. Polym Adv Technol 20:433–447
106.
go back to reference Tanaka S, Yasuda T, Katayama Y, Miyake Y (2011) Pervaporation dehydration performance of microporous carbon membranes prepared from resorcinol/formaldehyde polymer. J Membr Sci 379:52–59 Tanaka S, Yasuda T, Katayama Y, Miyake Y (2011) Pervaporation dehydration performance of microporous carbon membranes prepared from resorcinol/formaldehyde polymer. J Membr Sci 379:52–59
107.
go back to reference Hou H, Di Vona ML, Knauth P (2012) Building bridges: crosslinking of sulfonated aromatic polymers—a review. J Membr Sci 423-424:113–127 Hou H, Di Vona ML, Knauth P (2012) Building bridges: crosslinking of sulfonated aromatic polymers—a review. J Membr Sci 423-424:113–127
108.
go back to reference Hosseini SS, Omidkhah MR, Zarringhalam Moghaddam A, Pirouzfar V, Krantz WB, Tan NR (2014) Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process. Sep Purif Technol 122:278–289 Hosseini SS, Omidkhah MR, Zarringhalam Moghaddam A, Pirouzfar V, Krantz WB, Tan NR (2014) Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process. Sep Purif Technol 122:278–289
109.
go back to reference Fan H, Ran F, Zhang X, Song H, Jing W, Shen K, Kong L, Kang L (2014) A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes: preparation, characterization and electrochemical capacitive performance. J Energy Chem 23:684–693 Fan H, Ran F, Zhang X, Song H, Jing W, Shen K, Kong L, Kang L (2014) A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes: preparation, characterization and electrochemical capacitive performance. J Energy Chem 23:684–693
110.
go back to reference Itta AK, Tseng H-H, Wey M-Y (2011) Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. J Membr Sci 372:387–395 Itta AK, Tseng H-H, Wey M-Y (2011) Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. J Membr Sci 372:387–395
111.
go back to reference Salehian P, Yong WF, Chung T-S (2016) Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO2/CH4 separation. J Membr Sci 518:110–119 Salehian P, Yong WF, Chung T-S (2016) Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO2/CH4 separation. J Membr Sci 518:110–119
112.
go back to reference Moon EJ, Kim JW, Kim CK (2006) Fabrication of membranes for the liquid separation: part 2: microfiltration membranes prepared from immiscible blends containing polysulfone and poly(1-vinylpyrrolidone-co-acrylonitrile) copolymers. J Membr Sci 274:244–251 Moon EJ, Kim JW, Kim CK (2006) Fabrication of membranes for the liquid separation: part 2: microfiltration membranes prepared from immiscible blends containing polysulfone and poly(1-vinylpyrrolidone-co-acrylonitrile) copolymers. J Membr Sci 274:244–251
113.
go back to reference Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094 Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094
114.
go back to reference Halder K, Khan MM, Grünauer J, Shishatskiy S, Abetz C, Filiz V, Abetz V (2017) Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. J Membr Sci 539:368–382 Halder K, Khan MM, Grünauer J, Shishatskiy S, Abetz C, Filiz V, Abetz V (2017) Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. J Membr Sci 539:368–382
115.
go back to reference La Mantia FP, Morreale M, Botta L, Mistretta MC, Ceraulo M, Scaffaro R (2017) Degradation of polymer blends: a brief review. Polym Degrad Stab 145:79–92 La Mantia FP, Morreale M, Botta L, Mistretta MC, Ceraulo M, Scaffaro R (2017) Degradation of polymer blends: a brief review. Polym Degrad Stab 145:79–92
116.
go back to reference La Mantia FP, Valenza A (1985) Long-term thermomechanical degradation of molten polystyrene. Polym Degrad Stab 13:105–111 La Mantia FP, Valenza A (1985) Long-term thermomechanical degradation of molten polystyrene. Polym Degrad Stab 13:105–111
117.
go back to reference Matusinovic Z, Shukla R, Manias E, Hogshead CG, Wilkie CA (2012) Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polym Degrad Stab 97:2481–2486 Matusinovic Z, Shukla R, Manias E, Hogshead CG, Wilkie CA (2012) Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polym Degrad Stab 97:2481–2486
118.
go back to reference Sazali N, Salleh WNW, Ismail AF, Kadirgama K, Othman FEC (2018) P84 co-polyimide based-tubular carbon membrane: effect of heating rates on helium separations. Solid State Phenom 280:308–311 Sazali N, Salleh WNW, Ismail AF, Kadirgama K, Othman FEC (2018) P84 co-polyimide based-tubular carbon membrane: effect of heating rates on helium separations. Solid State Phenom 280:308–311
119.
go back to reference Sazali N, Salleh WNW, Ismail AF, Ismail NH, Mohamed MA, Nordin NAHM, Sokri MNM, Iwamoto Y, Honda S (2018) Enhanced gas separation performance using carbon membranes containing nanocrystalline cellulose and BTDA-TDI/MDI polyimide. Chem Eng Res Des Sazali N, Salleh WNW, Ismail AF, Ismail NH, Mohamed MA, Nordin NAHM, Sokri MNM, Iwamoto Y, Honda S (2018) Enhanced gas separation performance using carbon membranes containing nanocrystalline cellulose and BTDA-TDI/MDI polyimide. Chem Eng Res Des
120.
go back to reference Sazali N, Salleh WNW, Nordin NAHM, Ismail AF (2015) Matrimid-based carbon tubular membrane: effect of carbonization environment. J Ind Eng Chem 32:167–171 Sazali N, Salleh WNW, Nordin NAHM, Ismail AF (2015) Matrimid-based carbon tubular membrane: effect of carbonization environment. J Ind Eng Chem 32:167–171
121.
go back to reference Kim JS, Moon SJ, Wang HH, Kim S, Lee YM (2019) Mixed matrix membranes with a thermally rearranged polymer and ZIF-8 for hydrogen separation. J Membr Sci 582:381–390 Kim JS, Moon SJ, Wang HH, Kim S, Lee YM (2019) Mixed matrix membranes with a thermally rearranged polymer and ZIF-8 for hydrogen separation. J Membr Sci 582:381–390
122.
go back to reference Strugova DV, Zadorozhnyy MY, Berdonosova EA, Yablokova MY, Konik PA, Zheleznyi MV, Semenov DV, Milovzorov GS, Padaki M, Kaloshkin SD, Zadorozhnyy VY, Klyamkin SN (2018) Novel process for preparation of metal-polymer composite membranes for hydrogen separation. Int J Hydrog Energy 43:12146–12152 Strugova DV, Zadorozhnyy MY, Berdonosova EA, Yablokova MY, Konik PA, Zheleznyi MV, Semenov DV, Milovzorov GS, Padaki M, Kaloshkin SD, Zadorozhnyy VY, Klyamkin SN (2018) Novel process for preparation of metal-polymer composite membranes for hydrogen separation. Int J Hydrog Energy 43:12146–12152
123.
go back to reference Mural PKS, Madras G, Bose S (2018) Polymeric membranes derived from immiscible blends with hierarchical porous structures, tailored bio-interfaces and enhanced flux: potential and key challenges. Nano-Structures Nano-Objects 14:149–165 Mural PKS, Madras G, Bose S (2018) Polymeric membranes derived from immiscible blends with hierarchical porous structures, tailored bio-interfaces and enhanced flux: potential and key challenges. Nano-Structures Nano-Objects 14:149–165
124.
go back to reference Zhao Y, Zhao D, Kong C, Zhou F, Jiang T, Chen L (2019) Design of thin and tubular MOFs-polymer mixed matrix membranes for highly selective separation of H2 and CO2. Sep Purif Technol 220:197–205 Zhao Y, Zhao D, Kong C, Zhou F, Jiang T, Chen L (2019) Design of thin and tubular MOFs-polymer mixed matrix membranes for highly selective separation of H2 and CO2. Sep Purif Technol 220:197–205
125.
go back to reference Hayes DG, Wadsworth LC, Sintim HY, Flury M, English M, Schaeffer S, Saxton AM (2017) Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym Test 62:454–467 Hayes DG, Wadsworth LC, Sintim HY, Flury M, English M, Schaeffer S, Saxton AM (2017) Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym Test 62:454–467
126.
go back to reference Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584 Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93:561–584
127.
go back to reference Hamad K, Kaseem M, Deri F (2013) Recycling of waste from polymer materials: An overview of the recent works. Polym Degrad Stab 98:2801–2812 Hamad K, Kaseem M, Deri F (2013) Recycling of waste from polymer materials: An overview of the recent works. Polym Degrad Stab 98:2801–2812
128.
go back to reference Rizzarelli P, Carroccio S (2014) Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal Chim Acta 808:18–43 Rizzarelli P, Carroccio S (2014) Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Anal Chim Acta 808:18–43
129.
go back to reference Badia JD, Gil-Castell O, Ribes-Greus A (2017) Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 137:35–57 Badia JD, Gil-Castell O, Ribes-Greus A (2017) Long-term properties and end-of-life of polymers from renewable resources. Polym Degrad Stab 137:35–57
130.
go back to reference Lei F, Li Z, Ye L, Wang Y, Lin S (2016) One-pot synthesis of Pt/SnO2/GNs and its electro-photo-synergistic catalysis for methanol oxidation. Int J Hydrog Energy 41:255–264 Lei F, Li Z, Ye L, Wang Y, Lin S (2016) One-pot synthesis of Pt/SnO2/GNs and its electro-photo-synergistic catalysis for methanol oxidation. Int J Hydrog Energy 41:255–264
131.
go back to reference Chen X, Wang J, Shen J (2005) Effect of UV-irradiation on poly(vinyl chloride) modified by methyl methacrylate–butadiene–styrene copolymer. Polym Degrad Stab 87:527–533 Chen X, Wang J, Shen J (2005) Effect of UV-irradiation on poly(vinyl chloride) modified by methyl methacrylate–butadiene–styrene copolymer. Polym Degrad Stab 87:527–533
132.
go back to reference Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112 Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112
133.
go back to reference Hao J, Jiang Y, Gao X, Xie F, Shao Z, Yi B (2017) Degradation reduction of polybenzimidazole membrane blended with CeO2 as a regenerative free radical scavenger. J Membr Sci 522:23–30 Hao J, Jiang Y, Gao X, Xie F, Shao Z, Yi B (2017) Degradation reduction of polybenzimidazole membrane blended with CeO2 as a regenerative free radical scavenger. J Membr Sci 522:23–30
134.
go back to reference Cook WJ, Cameron JA, Bell JP, Huang SJ (1981) Scanning electron microscopic visualization of biodegradation of polycaprolactones by fungi. J Polym Sci Polym Lett Ed 19:159–165 Cook WJ, Cameron JA, Bell JP, Huang SJ (1981) Scanning electron microscopic visualization of biodegradation of polycaprolactones by fungi. J Polym Sci Polym Lett Ed 19:159–165
135.
go back to reference Ji Y-L, An Q-F, Weng X-D, Hung W-S, Lee K-R, Gao C-J (2018) Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation. J Membr Sci 548:559–571 Ji Y-L, An Q-F, Weng X-D, Hung W-S, Lee K-R, Gao C-J (2018) Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation. J Membr Sci 548:559–571
136.
go back to reference Abdelsamad AMA, Khalil ASG, Ulbricht M (2018) Influence of controlled functionalization of mesoporous silica nanoparticles as tailored fillers for thin-film nanocomposite membranes on desalination performance. J Membr Sci 563:149–161 Abdelsamad AMA, Khalil ASG, Ulbricht M (2018) Influence of controlled functionalization of mesoporous silica nanoparticles as tailored fillers for thin-film nanocomposite membranes on desalination performance. J Membr Sci 563:149–161
137.
go back to reference Volgin IV, Larin SV, Lyulin AV, Lyulin SV (2018) Coarse-grained molecular-dynamics simulations of nanoparticle diffusion in polymer nanocomposites. Polymer 145:80–87 Volgin IV, Larin SV, Lyulin AV, Lyulin SV (2018) Coarse-grained molecular-dynamics simulations of nanoparticle diffusion in polymer nanocomposites. Polymer 145:80–87
138.
go back to reference Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V (2018) Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Membr Sci 550:173–197 Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V (2018) Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Membr Sci 550:173–197
139.
go back to reference Shen Y-x, Saboe PO, Sines IT, Erbakan M, Kumar M (2014) Biomimetic membranes: a review. J Membr Sci 454:359–381 Shen Y-x, Saboe PO, Sines IT, Erbakan M, Kumar M (2014) Biomimetic membranes: a review. J Membr Sci 454:359–381
140.
go back to reference Whitesides GM (2004) Preface. In: van Rijn CJM (ed) Membrane Science and Technology. Elsevier, pp vii–viii Whitesides GM (2004) Preface. In: van Rijn CJM (ed) Membrane Science and Technology. Elsevier, pp vii–viii
141.
go back to reference Attia NF, Abd El-Aal NS, Hassan MA (2016) Facile synthesis of graphene sheets decorated nanoparticles and flammability of their polymer nanocomposites. Polym Degrad Stab 126:65–74 Attia NF, Abd El-Aal NS, Hassan MA (2016) Facile synthesis of graphene sheets decorated nanoparticles and flammability of their polymer nanocomposites. Polym Degrad Stab 126:65–74
142.
go back to reference Burgos-Mármol JJ, Patti A (2017) Unveiling the impact of nanoparticle size dispersity on the behavior of polymer nanocomposites. Polymer 113:92–104 Burgos-Mármol JJ, Patti A (2017) Unveiling the impact of nanoparticle size dispersity on the behavior of polymer nanocomposites. Polymer 113:92–104
143.
go back to reference Wang R, Shi X, Xiao A, Zhou W, Wang Y (2018) Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. J Membr Sci 566:197–204 Wang R, Shi X, Xiao A, Zhou W, Wang Y (2018) Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. J Membr Sci 566:197–204
144.
go back to reference Wang X, Kalali EN, Wan J-T, Wang D-Y (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46 Wang X, Kalali EN, Wan J-T, Wang D-Y (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46
145.
go back to reference Ahmed L, Zhang B, Hatanaka LC, Mannan MS (2018) Application of polymer nanocomposites in the flame retardancy study. J Loss Prev Process Ind 55:381–391 Ahmed L, Zhang B, Hatanaka LC, Mannan MS (2018) Application of polymer nanocomposites in the flame retardancy study. J Loss Prev Process Ind 55:381–391
146.
go back to reference Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187 Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187
147.
go back to reference Bose S, Robertson SF, Bandyopadhyay A (2018) Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater 66:6–22 Bose S, Robertson SF, Bandyopadhyay A (2018) Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater 66:6–22
148.
go back to reference Chen Q, Liang S, Thouas GA (2013) Elastomeric biomaterials for tissue engineering. Prog Polym Sci 38:584–671 Chen Q, Liang S, Thouas GA (2013) Elastomeric biomaterials for tissue engineering. Prog Polym Sci 38:584–671
149.
go back to reference Soro N, Brassart L, Chen Y, Veidt M, Attar H, Dargusch MS (2018) Finite element analysis of porous commercially pure titanium for biomedical implant application. Mater Sci Eng A 725:43–50 Soro N, Brassart L, Chen Y, Veidt M, Attar H, Dargusch MS (2018) Finite element analysis of porous commercially pure titanium for biomedical implant application. Mater Sci Eng A 725:43–50
150.
go back to reference Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei Kolahchi A, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63 Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei Kolahchi A, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63
151.
go back to reference Li H, Zhang G, Wu J, Zhao C, Jia Q, Lew CM, Zhang L, Zhang Y, Han M, Zhu J, Shao K, Ni J, Na H (2010) A facile approach to prepare self-cross-linkable sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. J Power Sources 195:8061–8066 Li H, Zhang G, Wu J, Zhao C, Jia Q, Lew CM, Zhang L, Zhang Y, Han M, Zhu J, Shao K, Ni J, Na H (2010) A facile approach to prepare self-cross-linkable sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. J Power Sources 195:8061–8066
Metadata
Title
Membranes for hydrogen separation: a significant review
Authors
Norazlianie Sazali
Mohamad Azuwa Mohamed
Wan Norharyati Wan Salleh
Publication date
12-03-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 3-4/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05141-z

Other articles of this Issue 3-4/2020

The International Journal of Advanced Manufacturing Technology 3-4/2020 Go to the issue

Premium Partners