Skip to main content
Top
Published in: Cognitive Neurodynamics 4/2021

17-11-2020 | Research Article

Memory retention in pyramidal neurons: a unified model of energy-based homo and heterosynaptic plasticity with homeostasis

Authors: Huanwen Chen, Lijuan Xie, Yijun Wang, Hang Zhang

Published in: Cognitive Neurodynamics | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The brain can learn new tasks without forgetting old ones. This memory retention is closely associated with the long-term stability of synaptic strength. To understand the capacity of pyramidal neurons to preserve memory under different tasks, we established a plasticity model based on the postsynaptic membrane energy state, in which the change in synaptic strength depends on the difference between the energy state after stimulation and the resting energy state. If the post-stimulation energy state is higher than the resting energy state, then synaptic depression occurs. On the contrary, the synapse is strengthened. Our model unifies homo- and heterosynaptic plasticity and can reproduce synaptic plasticity observed in multiple experiments, such as spike-timing-dependent plasticity, and cooperative plasticity with few and common parameters. Based on the proposed plasticity model, we conducted a simulation study on how the activation patterns of dendritic branches by different tasks affect the synaptic connection strength of pyramidal neurons. We further investigate the formation mechanism by which different tasks activate different dendritic branches. Simulation results show that compare to the classic plasticity model, the plasticity model we proposed can achieve a better spatial separation of different branches activated by different tasks in pyramidal neurons, which deepens our insight into the memory retention mechanism of brains.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abraham WC, Goddard GV (1983) Asymmetric relations between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature 305:717–719PubMedCrossRef Abraham WC, Goddard GV (1983) Asymmetric relations between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature 305:717–719PubMedCrossRef
go back to reference Abraham WC, Robins A (2005) Memory retention-the synaptic stability versus plasticity dilemma. Trends Neurosci 28:73–78PubMedCrossRef Abraham WC, Robins A (2005) Memory retention-the synaptic stability versus plasticity dilemma. Trends Neurosci 28:73–78PubMedCrossRef
go back to reference Abraham WC, Logan B, Wolff A, Benuskova L (2007) Heterosynaptic. LTD in the dentate gyrus of anesthetized rat requires homosynaptic activity, J Neurophysiol 98(2):1048–1051PubMed Abraham WC, Logan B, Wolff A, Benuskova L (2007) Heterosynaptic. LTD in the dentate gyrus of anesthetized rat requires homosynaptic activity, J Neurophysiol 98(2):1048–1051PubMed
go back to reference Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRef Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRef
go back to reference Benna MK, Fusi S (2016) Computational principles of synaptic memory consolidation. Nat Neurosci 19(2):1697–1706PubMedCrossRef Benna MK, Fusi S (2016) Computational principles of synaptic memory consolidation. Nat Neurosci 19(2):1697–1706PubMedCrossRef
go back to reference Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48PubMedPubMedCentralCrossRef Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48PubMedPubMedCentralCrossRef
go back to reference Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMedPubMedCentralCrossRef Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMedPubMedCentralCrossRef
go back to reference Chen JY, Lonjers P, Lee C, Chistiakova M, Volgushev M, Bazhenov M (2013) Heterosynaptic plasticity prevents runaway synaptic dynamics. J Neurosci 33(40):15915–15929PubMedPubMedCentralCrossRef Chen JY, Lonjers P, Lee C, Chistiakova M, Volgushev M, Bazhenov M (2013) Heterosynaptic plasticity prevents runaway synaptic dynamics. J Neurosci 33(40):15915–15929PubMedPubMedCentralCrossRef
go back to reference Chistiakova M, Bannon NM, Chen JY, Bazhenov M, Volgushev M (2015) Homeostatic role of heterosynaptic plasticity: models and experiments. Front Comput Neurosci 9:89PubMedPubMedCentralCrossRef Chistiakova M, Bannon NM, Chen JY, Bazhenov M, Volgushev M (2015) Homeostatic role of heterosynaptic plasticity: models and experiments. Front Comput Neurosci 9:89PubMedPubMedCentralCrossRef
go back to reference Clopath C, Büsing L, Gerstner Vasilaki E (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344–352PubMedCrossRef Clopath C, Büsing L, Gerstner Vasilaki E (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344–352PubMedCrossRef
go back to reference Debanne D, Inglebert Y, Russier M (2019) Plasticity of intrinsic neuronal excitability. Curr Opin Neurobiol 54:73–82PubMedCrossRef Debanne D, Inglebert Y, Russier M (2019) Plasticity of intrinsic neuronal excitability. Curr Opin Neurobiol 54:73–82PubMedCrossRef
go back to reference Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA 89:4363–4367PubMedPubMedCentralCrossRef Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA 89:4363–4367PubMedPubMedCentralCrossRef
go back to reference Eberhardt F, Herz AVM, Häusler S (2019) Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits. PLoS Comput Biol 15(3):e1006757PubMedPubMedCentralCrossRef Eberhardt F, Herz AVM, Häusler S (2019) Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits. PLoS Comput Biol 15(3):e1006757PubMedPubMedCentralCrossRef
go back to reference Fletcher LN, Williams SR (2019) Neocortical topology governs the dendritic integrative capacity of layer 5 pyramidal neurons. Neuron 101:76–90PubMedCrossRef Fletcher LN, Williams SR (2019) Neocortical topology governs the dendritic integrative capacity of layer 5 pyramidal neurons. Neuron 101:76–90PubMedCrossRef
go back to reference Froemke R, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434:221–225PubMedCrossRef Froemke R, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434:221–225PubMedCrossRef
go back to reference Gasselin C, Inglebert Y, Ankri N, Debanne D (2017) Plasticity of intrinsic excitability during LTD is mediated by bidirectional changes in h-channel activity. Sci Rep 7:14418PubMedPubMedCentralCrossRef Gasselin C, Inglebert Y, Ankri N, Debanne D (2017) Plasticity of intrinsic excitability during LTD is mediated by bidirectional changes in h-channel activity. Sci Rep 7:14418PubMedPubMedCentralCrossRef
go back to reference Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331PubMedCrossRef Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331PubMedCrossRef
go back to reference Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc Natl Acad Sci USA 109:3991–3996PubMedPubMedCentralCrossRef Graupner M, Brunel N (2012) Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc Natl Acad Sci USA 109:3991–3996PubMedPubMedCentralCrossRef
go back to reference Hallermann S, de Kock CPJ, Stuart GJ, Kole MHP (2012) State and location dependence of action potential metabolic cost in cortical pyramidal neurons. Nat Neurosci 15:1007–1014PubMedCrossRef Hallermann S, de Kock CPJ, Stuart GJ, Kole MHP (2012) State and location dependence of action potential metabolic cost in cortical pyramidal neurons. Nat Neurosci 15:1007–1014PubMedCrossRef
go back to reference Hasenstaub A, Otte S, Callaway E, Sejnowski TJ (2010) Metabolic cost as a unifying principle governing neuronal biophysics. Proc Natl Acad Sci USA 107:12329–12334PubMedPubMedCentralCrossRef Hasenstaub A, Otte S, Callaway E, Sejnowski TJ (2010) Metabolic cost as a unifying principle governing neuronal biophysics. Proc Natl Acad Sci USA 107:12329–12334PubMedPubMedCentralCrossRef
go back to reference Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232PubMedPubMedCentralCrossRef Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232PubMedPubMedCentralCrossRef
go back to reference Humble J, Hiratsuka K, Kasai H, Toyoizumi T (2019) Intrinsic spine dynamics are critical for recurrent network learning in models with and without autism spectrum disorder. Front Comput Neurosci 13:38PubMedPubMedCentralCrossRef Humble J, Hiratsuka K, Kasai H, Toyoizumi T (2019) Intrinsic spine dynamics are critical for recurrent network learning in models with and without autism spectrum disorder. Front Comput Neurosci 13:38PubMedPubMedCentralCrossRef
go back to reference Jedlicka P, Benuskova L, Abraham WC (2015) A voltage-based STDP rule combined with fast BCM-like metaplasticity accounts for LTP and concurrent “Heterosynaptic” LTD in the dentate gyrus in vivo. PLoS Comput Biol 11(11):e1004588PubMedPubMedCentralCrossRef Jedlicka P, Benuskova L, Abraham WC (2015) A voltage-based STDP rule combined with fast BCM-like metaplasticity accounts for LTP and concurrent “Heterosynaptic” LTD in the dentate gyrus in vivo. PLoS Comput Biol 11(11):e1004588PubMedPubMedCentralCrossRef
go back to reference Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11:475–480PubMedCrossRef Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11:475–480PubMedCrossRef
go back to reference Lee CM, Stoelzel C, Chistiakova M, Volgushev M (2012) Heterosynaptic plasticity induced by intracellular tetanisation in layer2/3 pyramidal neurons in rat auditory cortex. J Physiol 590:2253–2271PubMedPubMedCentralCrossRef Lee CM, Stoelzel C, Chistiakova M, Volgushev M (2012) Heterosynaptic plasticity induced by intracellular tetanisation in layer2/3 pyramidal neurons in rat auditory cortex. J Physiol 590:2253–2271PubMedPubMedCentralCrossRef
go back to reference Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing dependent plasticity depend on dendritic synapse location. J Neurosci 26:10420–10429PubMedPubMedCentralCrossRef Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing dependent plasticity depend on dendritic synapse location. J Neurosci 26:10420–10429PubMedPubMedCentralCrossRef
go back to reference Lisman J, Cooper K, Sehgal M, Silva AJ (2018) Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 21:309–314PubMedPubMedCentralCrossRef Lisman J, Cooper K, Sehgal M, Silva AJ (2018) Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 21:309–314PubMedPubMedCentralCrossRef
go back to reference Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737–739PubMedCrossRef Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737–739PubMedCrossRef
go back to reference Masse NY, Gregory DG, Freedman DJ (2018) Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization. Proc Natl Acad Sci USA 115(44):E10467–E10475PubMedPubMedCentralCrossRef Masse NY, Gregory DG, Freedman DJ (2018) Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization. Proc Natl Acad Sci USA 115(44):E10467–E10475PubMedPubMedCentralCrossRef
go back to reference Morris RGM et al (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond B Biol Sci 358:773–786PubMedPubMedCentralCrossRef Morris RGM et al (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond B Biol Sci 358:773–786PubMedPubMedCentralCrossRef
go back to reference Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75PubMedCrossRef Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75PubMedCrossRef
go back to reference O’Donnell C, Nolan MF, van Rossum MC (2011) Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J Neurosci 31(45):16142–16156PubMedPubMedCentralCrossRef O’Donnell C, Nolan MF, van Rossum MC (2011) Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J Neurosci 31(45):16142–16156PubMedPubMedCentralCrossRef
go back to reference Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural network. Neuron 37:989–999PubMedCrossRef Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural network. Neuron 37:989–999PubMedCrossRef
go back to reference Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627PubMedCrossRef Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627PubMedCrossRef
go back to reference Royer S, Paré D (2003) Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422:518–522PubMedCrossRef Royer S, Paré D (2003) Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422:518–522PubMedCrossRef
go back to reference Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99:10831–10836PubMedPubMedCentralCrossRef Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99:10831–10836PubMedPubMedCentralCrossRef
go back to reference Sjöström PJ, Häusser M (2006) A Cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–238PubMedCrossRef Sjöström PJ, Häusser M (2006) A Cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–238PubMedCrossRef
go back to reference Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164PubMedCrossRef Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164PubMedCrossRef
go back to reference Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRef Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRef
go back to reference Turrigiano GG (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 4:1–18CrossRef Turrigiano GG (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 4:1–18CrossRef
go back to reference Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107PubMedCrossRef Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107PubMedCrossRef
go back to reference Volgushev M, Chen JY, Ilin V, Goz R, Chistiakova M, Bazhenov M (2016) Partial breakdown of input specificity of STDP at individual synapses promotes new learning. J Neurosci 36(34):8842–8855PubMedPubMedCentralCrossRef Volgushev M, Chen JY, Ilin V, Goz R, Chistiakova M, Bazhenov M (2016) Partial breakdown of input specificity of STDP at individual synapses promotes new learning. J Neurosci 36(34):8842–8855PubMedPubMedCentralCrossRef
go back to reference Wang RB, Wang ZY (2018) The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dyn 92(3):973–982CrossRef Wang RB, Wang ZY (2018) The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dyn 92(3):973–982CrossRef
go back to reference Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing dependent integration of synaptic potentiation and depression. Nat Neurosci 8:187–193PubMedCrossRef Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing dependent integration of synaptic potentiation and depression. Nat Neurosci 8:187–193PubMedCrossRef
go back to reference Wang RB, Tsuda I, Zhang ZK (2015) A new work mechanism on neuronal activity. Int J Neural Syst 25(3):1450037PubMedCrossRef Wang RB, Tsuda I, Zhang ZK (2015) A new work mechanism on neuronal activity. Int J Neural Syst 25(3):1450037PubMedCrossRef
go back to reference Wang YH, Wang RB, Zhu YT (2017) Optimal path-finding through mental exploration based on neural energy field gradients. Cogn Neurodyn 11(1):99–111PubMedCrossRef Wang YH, Wang RB, Zhu YT (2017) Optimal path-finding through mental exploration based on neural energy field gradients. Cogn Neurodyn 11(1):99–111PubMedCrossRef
go back to reference Xu NL et al (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492:247–251PubMedCrossRef Xu NL et al (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492:247–251PubMedCrossRef
go back to reference Zenke FE, Agnes J, Gerstner W (2015) Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat Commun 6:7922CrossRef Zenke FE, Agnes J, Gerstner W (2015) Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat Commun 6:7922CrossRef
go back to reference Zenke FE, Gerstner W, Ganguli S (2017) The temporal paradox of Hebbian learning and homeostatic plasticity. Curr Opin Neurobiol 43:166–176PubMedCrossRef Zenke FE, Gerstner W, Ganguli S (2017) The temporal paradox of Hebbian learning and homeostatic plasticity. Curr Opin Neurobiol 43:166–176PubMedCrossRef
go back to reference Zhu FY, Wang RB (2019) Energy expenditure computation of a single bursting neuron. Cogn Neurodyn 13(1):75–87PubMedCrossRef Zhu FY, Wang RB (2019) Energy expenditure computation of a single bursting neuron. Cogn Neurodyn 13(1):75–87PubMedCrossRef
Metadata
Title
Memory retention in pyramidal neurons: a unified model of energy-based homo and heterosynaptic plasticity with homeostasis
Authors
Huanwen Chen
Lijuan Xie
Yijun Wang
Hang Zhang
Publication date
17-11-2020
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 4/2021
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-020-09652-z

Other articles of this Issue 4/2021

Cognitive Neurodynamics 4/2021 Go to the issue