Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 1/2020

21-10-2019

Meshless Method for Nonuniform Heat-Transfer/Solidification Behavior of Continuous Casting Round Billet

Authors: Laiqiang Cai, Xudong Wang, Ning Wang, Man Yao

Published in: Metallurgical and Materials Transactions B | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Numerical simulation is the primary approach to evaluate the complex solidification behavior for the continuous casting (CC) process, in which the methods based on the mesh and topology technique have been widely used to solve field variables. For the traditional techniques, such as the finite difference, finite element, and boundary element methods, it is arduous or even impossible to deal with complicated problems that involve multiphase coupling, interface tracking/reconstruction, and self-adaptation due to the inherent weaknesses in the grid structure and mesh dependence. Hence, the present work explores a meshless calculation method for the two-dimensional unsteady heat-transfer problem and proposes an element-free Galerkin (EFG) model for solving heat transfer inside the CC mold based on the moving least-squares approximation. The temperature functions are approximated and constructed by a linear basis and cubic spline weight function over a set of rectangular supporting domain; then, the discrete heat-transfer governing equation based on the EFG method is deduced. The heat flux measured in the real casting process is set as the boundary condition to calculate the nonuniform solidification of the round billet. The calculated results demonstrate that the shell thickness is consistent with that obtained by the square root law of solidification. In addition, the high heat flux region near the meniscus directly determines the growth characteristics of the initial billet shell, which ultimately results in the overall nonuniformity of the shell. The EFG method has the characteristics of fast convergence, high computational accuracy, and great discrete flexibility; it also provides a novel and effective approach for subsequent thermomechanical coupling and crack propagation analysis in the CC process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Du, X. Wang, X. Han, J. Xu, and M. Yao: Ironmak. Steelmak., 2018, vol. 45, pp. 350–55.CrossRef F. Du, X. Wang, X. Han, J. Xu, and M. Yao: Ironmak. Steelmak., 2018, vol. 45, pp. 350–55.CrossRef
2.
go back to reference P.H. Hu, X.D. Wang, J.J. Wei, M. Yao, and Q.T. Guo: ISIJ Int., 2018, vol. 58, pp. 892–98.CrossRef P.H. Hu, X.D. Wang, J.J. Wei, M. Yao, and Q.T. Guo: ISIJ Int., 2018, vol. 58, pp. 892–98.CrossRef
3.
go back to reference A.S.M. Jonayat and B.G. Thomas: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1842–64.CrossRef A.S.M. Jonayat and B.G. Thomas: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1842–64.CrossRef
4.
go back to reference H. Cheng, M.J. Peng, and Y.M. Cheng: Int. J. Numer. Methods Eng., 2018, vol. 114, pp. 321–45.CrossRef H. Cheng, M.J. Peng, and Y.M. Cheng: Int. J. Numer. Methods Eng., 2018, vol. 114, pp. 321–45.CrossRef
5.
6.
go back to reference J.P. Zhang, S.S. Wang, S.G Gong, Q.S. Zuo, and H.Y. Hu: Eng. Anal. Bound. Elem., 2019, vol. 101, pp. 198–213.CrossRef J.P. Zhang, S.S. Wang, S.G Gong, Q.S. Zuo, and H.Y. Hu: Eng. Anal. Bound. Elem., 2019, vol. 101, pp. 198–213.CrossRef
7.
go back to reference L. Zhang, H.F. Shen, Y.M. Rong, and T.Y. Huang: Mater. Sci. Eng. A, 2007, vol. 466, pp. 71–78.CrossRef L. Zhang, H.F. Shen, Y.M. Rong, and T.Y. Huang: Mater. Sci. Eng. A, 2007, vol. 466, pp. 71–78.CrossRef
8.
go back to reference L. Zhang, Y.M. Rong, H.F. Shen, and T.Y. Huang: J. Mater. Process. Technol., 2007, vol. 192, pp. 511–17.CrossRef L. Zhang, Y.M. Rong, H.F. Shen, and T.Y. Huang: J. Mater. Process. Technol., 2007, vol. 192, pp. 511–17.CrossRef
9.
go back to reference R. Vertnik and B. Sarler: Int. J. Cast Met. Res., 2009, vol. 22, pp. 311–13.CrossRef R. Vertnik and B. Sarler: Int. J. Cast Met. Res., 2009, vol. 22, pp. 311–13.CrossRef
10.
go back to reference M. Alizadeh, S.A.J. Jahromi, and S.B. Nasihatkon: ISIJ Int., 2010, vol. 50, pp. 411–17.CrossRef M. Alizadeh, S.A.J. Jahromi, and S.B. Nasihatkon: ISIJ Int., 2010, vol. 50, pp. 411–17.CrossRef
11.
go back to reference X. Zhang, X.H. Liu, K.Z. Song, and M.W. Lu: Int. J. Numer. Methods Eng., 2001, vol. 51, pp. 1089–1100.CrossRef X. Zhang, X.H. Liu, K.Z. Song, and M.W. Lu: Int. J. Numer. Methods Eng., 2001, vol. 51, pp. 1089–1100.CrossRef
12.
go back to reference G.R. Liu and Y.T. Gu: An Introduction to Meshfree Methods and Their Programming, 1st ed., Springer, Dordrecht, 2005, pp. 54–111. G.R. Liu and Y.T. Gu: An Introduction to Meshfree Methods and Their Programming, 1st ed., Springer, Dordrecht, 2005, pp. 54–111.
13.
go back to reference S.S. Pandey, P.K. Kasundra, and S.D. Daxini: Int. J. Theor. Appl. Res. Mech. Eng., 2013, vol. 2, pp. 85–89. S.S. Pandey, P.K. Kasundra, and S.D. Daxini: Int. J. Theor. Appl. Res. Mech. Eng., 2013, vol. 2, pp. 85–89.
14.
go back to reference G.R. Liu: Mesh Free Methods Moving Beyond the Finite Element Method, 1st ed., CRC Press LLC, Boca Raton, FL, 2002, pp. 53–265.CrossRef G.R. Liu: Mesh Free Methods Moving Beyond the Finite Element Method, 1st ed., CRC Press LLC, Boca Raton, FL, 2002, pp. 53–265.CrossRef
15.
go back to reference J.C. Hostos, A.D. Bencomo, and E.S. Cabrera: Therm. Stresses, 2017, 41, 160–81.CrossRef J.C. Hostos, A.D. Bencomo, and E.S. Cabrera: Therm. Stresses, 2017, 41, 160–81.CrossRef
16.
go back to reference T. Belytschko, Y.Y. Lu, and L. Gu: Int. J. Numer. Methods Eng., 1994, vol. 37, pp. 229–56.CrossRef T. Belytschko, Y.Y. Lu, and L. Gu: Int. J. Numer. Methods Eng., 1994, vol. 37, pp. 229–56.CrossRef
17.
go back to reference V.P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot: Math. Comput. Simul., 2008, vol. 79, pp. 763–813.CrossRef V.P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot: Math. Comput. Simul., 2008, vol. 79, pp. 763–813.CrossRef
18.
go back to reference T.J.R. Hughes: Comput. Meth. Appl. Mech. Eng., 1977, vol. 10, pp. 135–39.CrossRef T.J.R. Hughes: Comput. Meth. Appl. Mech. Eng., 1977, vol. 10, pp. 135–39.CrossRef
19.
go back to reference B. Lally, L. Biegler, and H. Henein: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 761–70.CrossRef B. Lally, L. Biegler, and H. Henein: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 761–70.CrossRef
20.
21.
go back to reference X.Z. Zhang and L.J. Xu: Iron Steel, 2005, vol. 40, pp. 25–29. X.Z. Zhang and L.J. Xu: Iron Steel, 2005, vol. 40, pp. 25–29.
Metadata
Title
Meshless Method for Nonuniform Heat-Transfer/Solidification Behavior of Continuous Casting Round Billet
Authors
Laiqiang Cai
Xudong Wang
Ning Wang
Man Yao
Publication date
21-10-2019
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 1/2020
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-019-01718-6

Other articles of this Issue 1/2020

Metallurgical and Materials Transactions B 1/2020 Go to the issue

Premium Partners