Skip to main content
Top

2018 | OriginalPaper | Chapter

5. Metal Nanoparticles as Glucose Sensor

Authors : Akrema, Rahisuddin

Published in: Nanomaterials and Their Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diabetes, a metabolic disorder, has become a major health problem in the world. According to WHO report, the number of patients is projected to 300 million in 2025. Therefore, the need of glucose detection is extremely important to the patients suffering from diabetes. Glucose oxidase (GOx) has been extensively used to construct amperometric biosensors for glucose detection owing to its high selectivity and sensitivity to glucose. However, GOx-based biosensors suffer from a stability problem due to the fundamental feature of enzymes. Therefore, it requires a need for enzyme-free glucose sensors. During last two decades, considerable attention has been paid to develop enzyme-free electrodes. Precious metals, metal alloys, and metal nanoparticles are extensively studied for advancement of non-enzymatic glucose sensors. Therefore, the need of a cost-effective, sensitive, and reliable enzyme-free glucose sensor is in great demand. In recent years, noble metal nanoparticles have found immense interest by researchers due to their potential in label-free forms of biological and chemical sensors. The high capability of these sensors is due to the novel properties of noble metal nanostructured arrays, for instance, high surface to volume ratio, localized surface plasmon resonance, excellent conductivity and anomalous transmission, and reflection of light. The amperometric technique is most widely used tool in the sensing of glucose. On the other side, some LSPR sensors are also reported which showed good sensitive to the changes in refractive index occurring at a metal/dielectric interface. Some researchers also studied fiber-optic-based glucose sensor which was based on the attenuated total reflection phenomenon. Enzymatic and non-enzymatic sensors of silver, gold, and copper nanoparticles are discussed in details in the chapter. The fabrication of glucose sensors has also been discussed with keeping in view the interest of the researchers. The objective of this chapter is to cover the bare and modified/composites of metal nanoparticles as glucose sensor. The most recent as well as conventional fabrication methods are discussed in detail. The linearity range and limit of detection of the glucose sensors are described in detail to justify the fabrication process. The chapter will provide in-depth review of metal nanoparticles-based glucose sensors which would be beneficial to all researchers, scientists, engineers, and students who are in direct contact of developing and using glucose sensors. It is hoped that the chapter will bridge the common gap between the research literature and standard textbooks. The material in this chapter emphasizes on developments of sensitive, rapid, and cheap systems for identification of glucose. The fabrication techniques of metal nanoparticles as glucose sensor are also studied in connection with different methodologies like SPR, SERS, electrochemical, and paper based devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191–195 (2004)CrossRef Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191–195 (2004)CrossRef
2.
go back to reference P. D’Orazio, Biosensors in clinical chemistry. (2003) P. D’Orazio, Biosensors in clinical chemistry. (2003)
3.
go back to reference J.D. Newman, A.P.F. Turner, Home blood glucose biosensors: a commercial perspective. (2005) J.D. Newman, A.P.F. Turner, Home blood glucose biosensors: a commercial perspective. (2005)
4.
go back to reference L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962)CrossRef L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962)CrossRef
5.
go back to reference C. Deng, J. Chen, X. Chen, C. Xiao, L. Nie, S. Yao, Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens. Bioelectron. 23, 1272–1277 (2008)CrossRef C. Deng, J. Chen, X. Chen, C. Xiao, L. Nie, S. Yao, Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens. Bioelectron. 23, 1272–1277 (2008)CrossRef
6.
go back to reference R. Wilson, A.P.F. Turner, Glucose oxidase: an ideal enzyme. (1992) R. Wilson, A.P.F. Turner, Glucose oxidase: an ideal enzyme. (1992)
7.
go back to reference S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U S A 97, 996–1001 (2000)CrossRef S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U S A 97, 996–1001 (2000)CrossRef
8.
go back to reference J. Yguerabide, E.E. Yguerabide, Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal. Biochem. 262, 157–176 (1998)CrossRef J. Yguerabide, E.E. Yguerabide, Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal. Biochem. 262, 157–176 (1998)CrossRef
9.
go back to reference J.-M. Nam, C.S. Thaxton, C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003)CrossRef J.-M. Nam, C.S. Thaxton, C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003)CrossRef
10.
go back to reference Rahisuddin Akrema, Biomediated unmodified silver nanoparticles as a green probe for Cu2+ ion detection. Sens. Lettors. 13, 953–960 (2015)CrossRef Rahisuddin Akrema, Biomediated unmodified silver nanoparticles as a green probe for Cu2+ ion detection. Sens. Lettors. 13, 953–960 (2015)CrossRef
11.
go back to reference C.R. Yonzon, D.A. Stuart, X. Zhang, A.D. McFarland, C.L. Haynes, R.P. Van Duyne, Towards advanced chemical and biological nanosensors—An overview. (2005) C.R. Yonzon, D.A. Stuart, X. Zhang, A.D. McFarland, C.L. Haynes, R.P. Van Duyne, Towards advanced chemical and biological nanosensors—An overview. (2005)
12.
go back to reference A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne, Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005)CrossRef A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne, Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005)CrossRef
13.
go back to reference A.B. Dahlin, J.O. Tegenfeldt, F. Hǒǒk, Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem. 78, 4416–4423 (2006)CrossRef A.B. Dahlin, J.O. Tegenfeldt, F. Hǒǒk, Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem. 78, 4416–4423 (2006)CrossRef
14.
go back to reference A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003)CrossRef A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003)CrossRef
15.
go back to reference G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T.A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003)CrossRef G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T.A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003)CrossRef
16.
go back to reference R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides properties of gold nanoparticles selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 80, 1078–1081 (2010) R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides properties of gold nanoparticles selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 80, 1078–1081 (2010)
17.
go back to reference J.A. Dieringer, A.D. McFarland, N.C. Shah, D.A. Stuart, A.V. Whitney, C.R. Yonzon, M.A. Young, X. Zhang, R.P. Van Duyne, Introductory lecture surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss. 132, 9–26 (2006)CrossRef J.A. Dieringer, A.D. McFarland, N.C. Shah, D.A. Stuart, A.V. Whitney, C.R. Yonzon, M.A. Young, X. Zhang, R.P. Van Duyne, Introductory lecture surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss. 132, 9–26 (2006)CrossRef
18.
go back to reference D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977)CrossRef D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977)CrossRef
19.
go back to reference K.L. Haller, L.A. Bumm, R.I. Altkorn, E.J. Zeman, G.C. Schat, R.P. Van Duyne, Spatially resolved surface enhanced second harmonic generation: theoretical and experimental evidence for electromagnetic enhancement in the near infrared on a laser microfabricated Pt surface. J. Chem. Phys. 90, 1237–1252 (1989)CrossRef K.L. Haller, L.A. Bumm, R.I. Altkorn, E.J. Zeman, G.C. Schat, R.P. Van Duyne, Spatially resolved surface enhanced second harmonic generation: theoretical and experimental evidence for electromagnetic enhancement in the near infrared on a laser microfabricated Pt surface. J. Chem. Phys. 90, 1237–1252 (1989)CrossRef
20.
go back to reference T.R. Jensen, R.P. Van Duyne, S.A. Johnson, V.A. Maroni, Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Appl. Spectrosc. 54, 371–377 (2000)CrossRef T.R. Jensen, R.P. Van Duyne, S.A. Johnson, V.A. Maroni, Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Appl. Spectrosc. 54, 371–377 (2000)CrossRef
21.
go back to reference M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)CrossRef M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)CrossRef
22.
go back to reference K. Aslan, J.R. Lakowicz, H. Szmacinski, C.D. Geddes, Enhanced ratiometric pH sensing using SNAFL-2 on silver Island films: metal-enhanced fluorescence sensing. J. Fluoresc. 15, 37–40 (2005)CrossRef K. Aslan, J.R. Lakowicz, H. Szmacinski, C.D. Geddes, Enhanced ratiometric pH sensing using SNAFL-2 on silver Island films: metal-enhanced fluorescence sensing. J. Fluoresc. 15, 37–40 (2005)CrossRef
23.
go back to reference Y. Chen, K. Munechika, D.S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007)CrossRef Y. Chen, K. Munechika, D.S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007)CrossRef
24.
go back to reference A. Sundaramurthy, P.J. Schuck, N.R. Conley, D.P. Fromm, G.S. Kino, W.E. Moerner, Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355–360 (2006)CrossRef A. Sundaramurthy, P.J. Schuck, N.R. Conley, D.P. Fromm, G.S. Kino, W.E. Moerner, Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355–360 (2006)CrossRef
25.
go back to reference E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)CrossRef E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)CrossRef
26.
27.
go back to reference J. Wang, Nanoparticle-based electrochemical DNA detection. Anal. Chim. Acta. pp. 247–257 (2003) J. Wang, Nanoparticle-based electrochemical DNA detection. Anal. Chim. Acta. pp. 247–257 (2003)
28.
go back to reference E. Katz, I. Willner, J. Wang, Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis. 16, 19–44 (2004)CrossRef E. Katz, I. Willner, J. Wang, Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis. 16, 19–44 (2004)CrossRef
29.
go back to reference W. Ngeontae, W. Janrungroatsakul, P. Maneewattanapinyo, S. Ekgasit, W. Aeungmaitrepirom, T. Tuntulani, Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. Sens. Actuators, B Chem. 137, 320–326 (2009)CrossRef W. Ngeontae, W. Janrungroatsakul, P. Maneewattanapinyo, S. Ekgasit, W. Aeungmaitrepirom, T. Tuntulani, Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. Sens. Actuators, B Chem. 137, 320–326 (2009)CrossRef
30.
go back to reference K. Aslan, J. Zhang, J.R. Lakowicz, C.D. Geddes, Saccharide sensing using gold and silver nanoparticles—a review. J. Fluoresc. 14, 391–400 (2004)CrossRef K. Aslan, J. Zhang, J.R. Lakowicz, C.D. Geddes, Saccharide sensing using gold and silver nanoparticles—a review. J. Fluoresc. 14, 391–400 (2004)CrossRef
31.
go back to reference J. Lin, C. He, Y. Zhao, S. Zhang, One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sens. Actuators, B Chem. 137, 768–773 (2009)CrossRef J. Lin, C. He, Y. Zhao, S. Zhang, One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sens. Actuators, B Chem. 137, 768–773 (2009)CrossRef
32.
go back to reference X. Ren, X. Meng, D. Chen, F. Tang, J. Jiao, Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 21, 433–437 (2005)CrossRef X. Ren, X. Meng, D. Chen, F. Tang, J. Jiao, Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 21, 433–437 (2005)CrossRef
33.
go back to reference T. Chung, S.Y. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11, 10907–10929 (2011)CrossRef T. Chung, S.Y. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11, 10907–10929 (2011)CrossRef
34.
go back to reference X.Y. Zhang, A. Hu, T. Zhang, W. Lei, X.J. Xue, Y. Zhou, W.W. Duley, Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 5, 9082–9092 (2011)CrossRef X.Y. Zhang, A. Hu, T. Zhang, W. Lei, X.J. Xue, Y. Zhou, W.W. Duley, Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 5, 9082–9092 (2011)CrossRef
35.
go back to reference J.J. Mock, D.R. Smith, S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 3, 485–491 (2003)CrossRef J.J. Mock, D.R. Smith, S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 3, 485–491 (2003)CrossRef
36.
go back to reference Y. Shao, S. Xu, X. Zheng, Y. Wang, W. Xu, Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors 10, 3585–3596 (2010)CrossRef Y. Shao, S. Xu, X. Zheng, Y. Wang, W. Xu, Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors 10, 3585–3596 (2010)CrossRef
37.
go back to reference N. Cennamo, G. D’Agostino, A. Donà, G. Dacarro, P. Pallavicini, M. Pesavento, L. Zeni, Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors (Basel). 13, 14676–14686 (2013) N. Cennamo, G. D’Agostino, A. Donà, G. Dacarro, P. Pallavicini, M. Pesavento, L. Zeni, Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors (Basel). 13, 14676–14686 (2013)
38.
go back to reference W. Ma, H. Yang, W. Wang, P. Gao, J. Yao, Ethanol vapor sensing properties of triangular silver nanostructures based on localized surface plasmon resonance. Sensors 11, 8643–8653 (2011)CrossRef W. Ma, H. Yang, W. Wang, P. Gao, J. Yao, Ethanol vapor sensing properties of triangular silver nanostructures based on localized surface plasmon resonance. Sensors 11, 8643–8653 (2011)CrossRef
39.
go back to reference T. Zhang, Y. Song, X. Zhang, J. Wu, Synthesis of silver nanostructures by multistep methods. Sensors 14, 5860–5889 (2014)CrossRef T. Zhang, Y. Song, X. Zhang, J. Wu, Synthesis of silver nanostructures by multistep methods. Sensors 14, 5860–5889 (2014)CrossRef
40.
go back to reference A.J. Haes, S. Zou, G.C. Schatz, R.P. Van Duyne, A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B. 108, 109–116 (2004)CrossRef A.J. Haes, S. Zou, G.C. Schatz, R.P. Van Duyne, A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B. 108, 109–116 (2004)CrossRef
41.
go back to reference A. Serra, E. Filippo, M. Re, M. Palmisano, M. Vittori-Antisari, A. Buccolieri, D. Manno, Non-functionalized silver nanoparticles for a localized surface plasmon resonance-based glucose sensor. Nanotechnology 20, 165501 (2009)CrossRef A. Serra, E. Filippo, M. Re, M. Palmisano, M. Vittori-Antisari, A. Buccolieri, D. Manno, Non-functionalized silver nanoparticles for a localized surface plasmon resonance-based glucose sensor. Nanotechnology 20, 165501 (2009)CrossRef
42.
go back to reference Y. Xia, J. Ye, K. Tan, J. Wang, G. Yang, Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal. Chem. 85, 6241–6247 (2013)CrossRef Y. Xia, J. Ye, K. Tan, J. Wang, G. Yang, Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal. Chem. 85, 6241–6247 (2013)CrossRef
43.
go back to reference M. Ghiaci, M. Tghizadeh, A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, Silver nanoparticles decorated anchored type ligands as new electrochemical sensors for glucose detection. J. Taiwan Inst. Chem. Eng. 63, 39–45 (2016)CrossRef M. Ghiaci, M. Tghizadeh, A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, Silver nanoparticles decorated anchored type ligands as new electrochemical sensors for glucose detection. J. Taiwan Inst. Chem. Eng. 63, 39–45 (2016)CrossRef
44.
go back to reference C. Apetrei, I.M. Apetrei, J.A. De Saja, M.L. Rodriguez-Mendez, Carbon paste electrodes made from different carbonaceous materials: application in the study of antioxidants. Sensors (Basel) 11, 1328–1344 (2011)CrossRef C. Apetrei, I.M. Apetrei, J.A. De Saja, M.L. Rodriguez-Mendez, Carbon paste electrodes made from different carbonaceous materials: application in the study of antioxidants. Sensors (Basel) 11, 1328–1344 (2011)CrossRef
45.
go back to reference A.A. Ensafi, M.M. Abarghoui, B. Rezaei, A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochim. Acta 123, 219–226 (2014)CrossRef A.A. Ensafi, M.M. Abarghoui, B. Rezaei, A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochim. Acta 123, 219–226 (2014)CrossRef
46.
go back to reference T.G.S. Babu, T. Ramachandran, Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model. Electrochim. Acta 55, 1612–1618 (2010)CrossRef T.G.S. Babu, T. Ramachandran, Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model. Electrochim. Acta 55, 1612–1618 (2010)CrossRef
47.
go back to reference D. Li, Y. Sun, S. Yu, C. Sun, H. Yu, K. Xu, A single-loop fiber attenuated total reflection sensor enhanced by silver nanoparticles for continuous glucose monitoring. Sens. Actuators, B Chem. 220, 1033–1042 (2015)CrossRef D. Li, Y. Sun, S. Yu, C. Sun, H. Yu, K. Xu, A single-loop fiber attenuated total reflection sensor enhanced by silver nanoparticles for continuous glucose monitoring. Sens. Actuators, B Chem. 220, 1033–1042 (2015)CrossRef
48.
go back to reference S. Yu, D. Li, H. Chong, C. Sun, K. Xu, Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy. Opt. Lasers Eng. 55, 78–83 (2014)CrossRef S. Yu, D. Li, H. Chong, C. Sun, K. Xu, Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy. Opt. Lasers Eng. 55, 78–83 (2014)CrossRef
49.
go back to reference D. Li, S. Yu, C. Sun, C. Zou, H. Yu, K. Xu, U-shaped fiber-optic ATR sensor enhanced by silver nanoparticles for continuous glucose monitoring. Biosens. Bioelectron. 72, 370–375 (2015)CrossRef D. Li, S. Yu, C. Sun, C. Zou, H. Yu, K. Xu, U-shaped fiber-optic ATR sensor enhanced by silver nanoparticles for continuous glucose monitoring. Biosens. Bioelectron. 72, 370–375 (2015)CrossRef
50.
go back to reference A.C. Joshi, G.B. Markad, S.K. Haram, Rudimentary simple method for the decoration of graphene oxide with silver nanoparticles: their application for the amperometric detection of glucose in the human blood samples. Electrochim. Acta 161, 108–114 (2015)CrossRef A.C. Joshi, G.B. Markad, S.K. Haram, Rudimentary simple method for the decoration of graphene oxide with silver nanoparticles: their application for the amperometric detection of glucose in the human blood samples. Electrochim. Acta 161, 108–114 (2015)CrossRef
51.
go back to reference D. Feng, F. Wang, Z. Chen, Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens. Actuators, B Chem. 138, 539–544 (2009)CrossRef D. Feng, F. Wang, Z. Chen, Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens. Actuators, B Chem. 138, 539–544 (2009)CrossRef
52.
go back to reference T.D. Thanh, J. Balamurugan, S.H. Lee, N.H. Kim, J.H. Lee, Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens. Bioelectron. 81, 259–267 (2016)CrossRef T.D. Thanh, J. Balamurugan, S.H. Lee, N.H. Kim, J.H. Lee, Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens. Bioelectron. 81, 259–267 (2016)CrossRef
53.
go back to reference B.K. Jena, C.R. Raj, Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem. A Eur. J. 12, 2702–2708 (2006)CrossRef B.K. Jena, C.R. Raj, Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem. A Eur. J. 12, 2702–2708 (2006)CrossRef
54.
go back to reference R.R. Adzic, M.W. Hsiao, E.B. Yeager, Electrochemical oxidation of glucose on single crystal gold surfaces. J. Electroanal. Chem. Interfacial Electrochem. 260, 475–485 (1989)CrossRef R.R. Adzic, M.W. Hsiao, E.B. Yeager, Electrochemical oxidation of glucose on single crystal gold surfaces. J. Electroanal. Chem. Interfacial Electrochem. 260, 475–485 (1989)CrossRef
55.
go back to reference M.W. Hsiao, R.R. Adžić, E.B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. J. Electrochem. Soc. 143, 759–767 (1996)CrossRef M.W. Hsiao, R.R. Adžić, E.B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. J. Electrochem. Soc. 143, 759–767 (1996)CrossRef
56.
go back to reference L.D. Burke, P.F. Nugent, The electrochemistry of gold: II the electrocatalytic behaviour of the metal in aqueous media. Gold Bull. 31, 39–50 (1998)CrossRef L.D. Burke, P.F. Nugent, The electrochemistry of gold: II the electrocatalytic behaviour of the metal in aqueous media. Gold Bull. 31, 39–50 (1998)CrossRef
57.
go back to reference L.A. Larew, D.C. Johnson, Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. J. Electroanal. Chem. 262, 167–182 (1989)CrossRef L.A. Larew, D.C. Johnson, Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. J. Electroanal. Chem. 262, 167–182 (1989)CrossRef
58.
go back to reference L.D. Burke, Scope for new applications for gold arising from the electrocatalytic behaviour of its metastable surface states. Gold Bull. 37, 125–135 (2004)CrossRef L.D. Burke, Scope for new applications for gold arising from the electrocatalytic behaviour of its metastable surface states. Gold Bull. 37, 125–135 (2004)CrossRef
59.
go back to reference D. Cai, Y. Yu, Y. Lan, F.J. Dufort, G. Xiong, T. Paudel, Z. Ren, D.J. Wagner, T.C. Chiles, Glucose sensors made of novel carbon nanotube-gold nanoparticle composites. BioFactors 30, 271–277 (2007)CrossRef D. Cai, Y. Yu, Y. Lan, F.J. Dufort, G. Xiong, T. Paudel, Z. Ren, D.J. Wagner, T.C. Chiles, Glucose sensors made of novel carbon nanotube-gold nanoparticle composites. BioFactors 30, 271–277 (2007)CrossRef
60.
go back to reference Q. Chen, G.L. Kenausis, A. Heller, Stability of oxidases immobilized in silica gels. J. Am. Chem. Soc. 120, 4582–4585 (1998)CrossRef Q. Chen, G.L. Kenausis, A. Heller, Stability of oxidases immobilized in silica gels. J. Am. Chem. Soc. 120, 4582–4585 (1998)CrossRef
61.
go back to reference H. Tang, J. Chen, S. Yao, L. Nie, G. Deng, Y. Kuang, Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal. Biochem. 331, 89–97 (2004)CrossRef H. Tang, J. Chen, S. Yao, L. Nie, G. Deng, Y. Kuang, Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal. Biochem. 331, 89–97 (2004)CrossRef
62.
go back to reference E.H. El-Ads, A. Galal, N.F. Atta, Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode—towards a novel non-enzymatic glucose sensor. J. Electroanal. Chem. 749, 42–52 (2015)CrossRef E.H. El-Ads, A. Galal, N.F. Atta, Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode—towards a novel non-enzymatic glucose sensor. J. Electroanal. Chem. 749, 42–52 (2015)CrossRef
63.
go back to reference S. Zhang, N. Wang, H. Yu, Y. Niu, C. Sun, Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67, 15–22 (2005)CrossRef S. Zhang, N. Wang, H. Yu, Y. Niu, C. Sun, Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67, 15–22 (2005)CrossRef
64.
go back to reference X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 363, 143–150 (2007)CrossRef X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 363, 143–150 (2007)CrossRef
65.
go back to reference J. Yang, L.C. Jiang, W.D. Zhang, S. Gunasekaran, A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82, 25–33 (2010)CrossRef J. Yang, L.C. Jiang, W.D. Zhang, S. Gunasekaran, A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82, 25–33 (2010)CrossRef
66.
go back to reference J. Yang, W. De Zhang, S. Gunasekaran, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens. Bioelectron. 26, 279–284 (2010)CrossRef J. Yang, W. De Zhang, S. Gunasekaran, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens. Bioelectron. 26, 279–284 (2010)CrossRef
67.
go back to reference J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 709, 47–53 (2012)CrossRef J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 709, 47–53 (2012)CrossRef
68.
go back to reference J. Wang, G. Chen, M. Wang, M. Chatrathi, Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst. 129, 512 (2004)CrossRef J. Wang, G. Chen, M. Wang, M. Chatrathi, Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst. 129, 512 (2004)CrossRef
69.
go back to reference L. Lu, M.L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature. Science (80-.). 287, 1463–1466 (2000) L. Lu, M.L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature. Science (80-.). 287, 1463–1466 (2000)
70.
go back to reference J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRef J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRef
71.
go back to reference T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, S. Hirono, Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method. Electrochem. Commun. 4, 468–471 (2002)CrossRef T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, S. Hirono, Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method. Electrochem. Commun. 4, 468–471 (2002)CrossRef
72.
go back to reference S.T. Farrell, C.B. Breslin, Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim. Acta 49, 4497–4503 (2004)CrossRef S.T. Farrell, C.B. Breslin, Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim. Acta 49, 4497–4503 (2004)CrossRef
73.
go back to reference K.B. Male, S. Hrapovic, Y. Liu, D. Wang, J.H.T. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta 516, 35–41 (2004)CrossRef K.B. Male, S. Hrapovic, Y. Liu, D. Wang, J.H.T. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta 516, 35–41 (2004)CrossRef
74.
go back to reference J.Z. Xu, J.J. Zhu, H. Wang, H.Y. Chen, Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Anal. Lett. 36, 2723–2733 (2003)CrossRef J.Z. Xu, J.J. Zhu, H. Wang, H.Y. Chen, Nano-sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin. Anal. Lett. 36, 2723–2733 (2003)CrossRef
75.
go back to reference Q. Xu, Y. Zhao, J.Z. Xu, J.J. Zhu, Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuators, B Chem. 114, 379–386 (2006)CrossRef Q. Xu, Y. Zhao, J.Z. Xu, J.J. Zhu, Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuators, B Chem. 114, 379–386 (2006)CrossRef
76.
go back to reference C.H. Pyun, In situ spectroelectrochemical studies on anodic oxidation of copper in alkaline solution. J. Electrochem. Soc. 133, 2024 (1986)CrossRef C.H. Pyun, In situ spectroelectrochemical studies on anodic oxidation of copper in alkaline solution. J. Electrochem. Soc. 133, 2024 (1986)CrossRef
77.
go back to reference S. Dong, T. Kuwana, Cobalt-porphyrin-Nafion film on carbon microarray electrode to monitor oxygen for enzyme analysis for glucose. Electroanalysis 3, 485–491 (1991)CrossRef S. Dong, T. Kuwana, Cobalt-porphyrin-Nafion film on carbon microarray electrode to monitor oxygen for enzyme analysis for glucose. Electroanalysis 3, 485–491 (1991)CrossRef
78.
go back to reference Y. Xie, C.O. Huber, Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Anal. Chem. 63, 1714–1719 (1991)CrossRef Y. Xie, C.O. Huber, Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Anal. Chem. 63, 1714–1719 (1991)CrossRef
79.
go back to reference L. Jiang, R. Wang, X. Li, L. Jiang, G. Lu, Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun. 7, 597–601 (2005)CrossRef L. Jiang, R. Wang, X. Li, L. Jiang, G. Lu, Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun. 7, 597–601 (2005)CrossRef
80.
go back to reference S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76, 1083–1088 (2004)CrossRef S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76, 1083–1088 (2004)CrossRef
81.
go back to reference Y.C. Tsai, S.C. Li, J.M. Chen, Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 21, 3653–3658 (2005)CrossRef Y.C. Tsai, S.C. Li, J.M. Chen, Cast thin film biosensor design based on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 21, 3653–3658 (2005)CrossRef
82.
go back to reference M. Zhang, A. Smith, W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76, 5045–5050 (2004)CrossRef M. Zhang, A. Smith, W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76, 5045–5050 (2004)CrossRef
83.
go back to reference Y. Wang, W. Wei, J. Zeng, X. Liu, X. Zeng, Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim. Acta 160, 253–260 (2008)CrossRef Y. Wang, W. Wei, J. Zeng, X. Liu, X. Zeng, Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim. Acta 160, 253–260 (2008)CrossRef
84.
go back to reference N. Hui, W. Wang, G. Xu, X. Luo, Graphene oxide doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose. J. Mater. Chem. B. 3, 556–561 (2015)CrossRef N. Hui, W. Wang, G. Xu, X. Luo, Graphene oxide doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose. J. Mater. Chem. B. 3, 556–561 (2015)CrossRef
85.
go back to reference M. Xu, X. Luo, J.J. Davis, The label free picomolar detection of insulin in blood serum. Biosens. Bioelectron. 39, 21–25 (2013)CrossRef M. Xu, X. Luo, J.J. Davis, The label free picomolar detection of insulin in blood serum. Biosens. Bioelectron. 39, 21–25 (2013)CrossRef
Metadata
Title
Metal Nanoparticles as Glucose Sensor
Authors
Akrema
Rahisuddin
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6214-8_5

Premium Partners