Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

Metal-Organic Framework Composites IPMC Sensors and Actuators

Authors : Bianca Maranescu, Aurelia Visa

Published in: Ionic Polymer Metal Composites for Sensors and Actuators

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal-organic frameworks (MOFs), a highly studied class of complex structured porous materials, containing different types of central metal ions attached to organic linkers, are used in various applications such as catalysis, separation, absorption, photochemistry, proton conductivity, biotechnology, magnetism and sensoristic science etc. The architectural structures of MOFs provide special properties as improved thermal and mechanical stabilities, high surface areas and large pore sizes to these materials. The need for new functionalities is to take into account that the fabrication methods must be robust, scalable, friendly to environment and cost-effective.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRef Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRef
2.
go back to reference Batten, R.S., Champness, N.R., O’Keeffe, M., et al.: Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem. 85, 1715–1724 (2013)CrossRef Batten, R.S., Champness, N.R., O’Keeffe, M., et al.: Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem. 85, 1715–1724 (2013)CrossRef
3.
go back to reference Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, O.M.: Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage. Science 295, 469–472 (2002)CrossRef Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, O.M.: Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage. Science 295, 469–472 (2002)CrossRef
4.
go back to reference Zhou, H.C., Long, J.R., Yaghi, O.M.: Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012)CrossRef Zhou, H.C., Long, J.R., Yaghi, O.M.: Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012)CrossRef
5.
go back to reference Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M.: Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)CrossRef Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M.: Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)CrossRef
6.
go back to reference Lu, W., Wei, Z., Gu, Z.Y., Liu, T.F., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M., Zhou, H.C.: Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014)CrossRef Lu, W., Wei, Z., Gu, Z.Y., Liu, T.F., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M., Zhou, H.C.: Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014)CrossRef
7.
go back to reference Li, M., Li, D., O’Keeffe, M., Yaghi, O.M.: Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014)CrossRef Li, M., Li, D., O’Keeffe, M., Yaghi, O.M.: Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014)CrossRef
8.
go back to reference Wang, C., Liu, X., Demir, N.K., Chen, J.P., Li, K.: Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016) Wang, C., Liu, X., Demir, N.K., Chen, J.P., Li, K.: Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016)
9.
go back to reference Visa, A., Mracec, M., Maranescu, B.: Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio 6, 91 (2012) Visa, A., Mracec, M., Maranescu, B.: Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio 6, 91 (2012)
10.
go back to reference Stassen, I., Burtch, N., Talin, A., Falcaro, P., Allendorf, M., Ameloot, R.: An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017)CrossRef Stassen, I., Burtch, N., Talin, A., Falcaro, P., Allendorf, M., Ameloot, R.: An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017)CrossRef
11.
go back to reference Yaghi, O.M., Li, H.: Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995)CrossRef Yaghi, O.M., Li, H.: Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995)CrossRef
12.
go back to reference Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRef Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRef
13.
go back to reference Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013)CrossRef Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013)CrossRef
14.
go back to reference Colodrero, R.M.P., Cabeza, A., Olivera-Pastor, P., et al.: Divalent metal vinylphosphonate layered materials: compositional variability, structural peculiarities, dehydration behavior, and photoluminescent properties. Inorg. Chem. 50, 11202–11211 (2011) Colodrero, R.M.P., Cabeza, A., Olivera-Pastor, P., et al.: Divalent metal vinylphosphonate layered materials: compositional variability, structural peculiarities, dehydration behavior, and photoluminescent properties. Inorg. Chem. 50, 11202–11211 (2011)
15.
go back to reference Maranescu, B., Visa, A., Ilia, G., et al.: Spectroscopic properties of new cerium metal–organic framework based on phosphonate ligands with vinyl functional group. J. Coord. Chem. 67, 1562–1572 (2014)CrossRef Maranescu, B., Visa, A., Ilia, G., et al.: Spectroscopic properties of new cerium metal–organic framework based on phosphonate ligands with vinyl functional group. J. Coord. Chem. 67, 1562–1572 (2014)CrossRef
16.
go back to reference Horcajada, P., Gref, R., Baati, T., et al.: Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)CrossRef Horcajada, P., Gref, R., Baati, T., et al.: Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)CrossRef
17.
go back to reference Ping, L.W., Bin, X., Wang, G.Y., Wu, J.: Synthesis of polycarbonate diol catalyzed by metal-organic framework Zn4O[CO2-C6H4-CO2]3. Sci. China Chem. 54, 1468–1473 (2011) Ping, L.W., Bin, X., Wang, G.Y., Wu, J.: Synthesis of polycarbonate diol catalyzed by metal-organic framework Zn4O[CO2-C6H4-CO2]3. Sci. China Chem. 54, 1468–1473 (2011)
18.
go back to reference Safarifard, V., Morsali, A.: Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coord. Chem. Rev. 292, 1–14 (2015)CrossRef Safarifard, V., Morsali, A.: Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coord. Chem. Rev. 292, 1–14 (2015)CrossRef
19.
go back to reference Safarifard, V., Morsali, A.: Sonochemical syntheses and characterization of nano-sized lead(II) coordination polymer with ligand 1H-1,2,4-triazole-3-carboxylate. Ultrason. Sonochem. 19, 300–306 (2012)CrossRef Safarifard, V., Morsali, A.: Sonochemical syntheses and characterization of nano-sized lead(II) coordination polymer with ligand 1H-1,2,4-triazole-3-carboxylate. Ultrason. Sonochem. 19, 300–306 (2012)CrossRef
20.
go back to reference Abbasi, A.R., Noori, N., Azadbakht, A., Bafarani, M.: Dense coating of surface mounted Cu2O nanoparticles upon silk fibers under ultrasound irradiation with antibacterial activity. J. Iran. Chem. Soc. 13, 1273–1281 (2016)CrossRef Abbasi, A.R., Noori, N., Azadbakht, A., Bafarani, M.: Dense coating of surface mounted Cu2O nanoparticles upon silk fibers under ultrasound irradiation with antibacterial activity. J. Iran. Chem. Soc. 13, 1273–1281 (2016)CrossRef
21.
go back to reference Ranjbar, M., Nabitabar, M., Çelik, Ö., Yousefi, M.: Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles. J. Iran. Chem. Soc. 12, 551–559 (2015) Ranjbar, M., Nabitabar, M., Çelik, Ö., Yousefi, M.: Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles. J. Iran. Chem. Soc. 12, 551–559 (2015)
22.
go back to reference James, S.L., Adams, C.J., Bolm, C., et al.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012)CrossRef James, S.L., Adams, C.J., Bolm, C., et al.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012)CrossRef
23.
go back to reference Sakamoto, H., Matsuda, R., Kitagawa, S.: Systematic mechanochemical preparation of a series of coordination pillared layer frameworks. Dalton Trans. 41, 3956–3961 (2012)CrossRef Sakamoto, H., Matsuda, R., Kitagawa, S.: Systematic mechanochemical preparation of a series of coordination pillared layer frameworks. Dalton Trans. 41, 3956–3961 (2012)CrossRef
24.
go back to reference Lv, D., Chen, Y., Li, Y., et al.: Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 62, 2030–2036 (2017)CrossRef Lv, D., Chen, Y., Li, Y., et al.: Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 62, 2030–2036 (2017)CrossRef
25.
go back to reference Chen, Y., Wu, H., Liu, Z.: Liquid-assisted mechanochemical synthesis of copper based mof-505 for the separation of CO2 over CH4 or N2. Ind. Eng. Chem. Res. 57, 703–709 (2018)CrossRef Chen, Y., Wu, H., Liu, Z.: Liquid-assisted mechanochemical synthesis of copper based mof-505 for the separation of CO2 over CH4 or N2. Ind. Eng. Chem. Res. 57, 703–709 (2018)CrossRef
26.
go back to reference Chen, Y., Xiao, J., Lv, D., et al.: Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chem. Eng. Sci. 158, 539–544 (2017)CrossRef Chen, Y., Xiao, J., Lv, D., et al.: Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chem. Eng. Sci. 158, 539–544 (2017)CrossRef
27.
go back to reference Hashemi, L., Morsali, A.: Microwave assisted synthesis of a new lead(II) porous three-dimensional coordination polymer: study of nanostructured size effect on high iodide adsorption affinity. Cryst. Eng. Comm. 14, 779–781 (2012)CrossRef Hashemi, L., Morsali, A.: Microwave assisted synthesis of a new lead(II) porous three-dimensional coordination polymer: study of nanostructured size effect on high iodide adsorption affinity. Cryst. Eng. Comm. 14, 779–781 (2012)CrossRef
28.
go back to reference Ni, Z., Masel, R.I.: Rapid production of metal−organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006)CrossRef Ni, Z., Masel, R.I.: Rapid production of metal−organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006)CrossRef
29.
go back to reference Laybourn, A., Katrib, J., Ferrari-John, R.S., et al.: Metal–organic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 5, 7333–7338 (2017)CrossRef Laybourn, A., Katrib, J., Ferrari-John, R.S., et al.: Metal–organic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 5, 7333–7338 (2017)CrossRef
30.
go back to reference Blăniţă, G., Ardelean, O., Lupu, D., et al.: Microwave assisted synthesis of MOF-5 at atmospheric pressure. Rev. Roum. Chim. 56, 583–588 (2011) Blăniţă, G., Ardelean, O., Lupu, D., et al.: Microwave assisted synthesis of MOF-5 at atmospheric pressure. Rev. Roum. Chim. 56, 583–588 (2011)
31.
go back to reference MadhanVinu, I.D., Wei-Cheng, L., Duraisamy, S.R., et al.: Microwave-assisted synthesis of nanoporous aluminum-based coordination polymers as catalysts for selective sulfoxidation reaction. Polymers 9, 498 (2017)CrossRef MadhanVinu, I.D., Wei-Cheng, L., Duraisamy, S.R., et al.: Microwave-assisted synthesis of nanoporous aluminum-based coordination polymers as catalysts for selective sulfoxidation reaction. Polymers 9, 498 (2017)CrossRef
32.
go back to reference Martinez Joaristi, A., Juan-Alcaniz, J., Serra-Crespo, P., et al.: Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 12, 3489–3498 (2012)CrossRef Martinez Joaristi, A., Juan-Alcaniz, J., Serra-Crespo, P., et al.: Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 12, 3489–3498 (2012)CrossRef
33.
go back to reference Mueller, U., Schubert, M., Teich, F., et al.: Metal–organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)CrossRef Mueller, U., Schubert, M., Teich, F., et al.: Metal–organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)CrossRef
34.
go back to reference Yang, H., Liu, X., Song, X., et al.: In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBrTrans. Nonferrous Met. Soc. China 25, 3987–3994 (2015)CrossRef Yang, H., Liu, X., Song, X., et al.: In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBrTrans. Nonferrous Met. Soc. China 25, 3987–3994 (2015)CrossRef
35.
go back to reference Al-Kutubi, H., Gascon, J., Sudholter, E.J., Rassaei, L.: Electrosynthesis of metal–organic frameworks: challenges and opportunities. Chem. Electro. Chem. 2, 462–474 (2015) Al-Kutubi, H., Gascon, J., Sudholter, E.J., Rassaei, L.: Electrosynthesis of metal–organic frameworks: challenges and opportunities. Chem. Electro. Chem. 2, 462–474 (2015)
36.
go back to reference Pirzadeh, K., Ghoreyshi, A.A., Rahimnejad, M., Mohammadi, M.: Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation. Korean J. Chem. Eng. 35, 974–983 (2018)CrossRef Pirzadeh, K., Ghoreyshi, A.A., Rahimnejad, M., Mohammadi, M.: Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation. Korean J. Chem. Eng. 35, 974–983 (2018)CrossRef
37.
go back to reference Leigh, D.A.: Genesis of the nanomachines: the 2016 nobel prize in chemistry. Angew. Chem. Int. Ed. 55, 14506–14508 (2016)CrossRef Leigh, D.A.: Genesis of the nanomachines: the 2016 nobel prize in chemistry. Angew. Chem. Int. Ed. 55, 14506–14508 (2016)CrossRef
38.
go back to reference Le Bailly, B.: Nobel prize in chemistry: welcome to the machine. Nat. Nanotechnol. 11, 923–927 (2016)CrossRef Le Bailly, B.: Nobel prize in chemistry: welcome to the machine. Nat. Nanotechnol. 11, 923–927 (2016)CrossRef
39.
go back to reference Balzani, V., Credi, A., Venturi M.: Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009)CrossRef Balzani, V., Credi, A., Venturi M.: Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009)CrossRef
40.
go back to reference Abendroth, J.M., Bushuyev, O.S., Weiss, P.S., Barrett, C.J.: Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015)CrossRef Abendroth, J.M., Bushuyev, O.S., Weiss, P.S., Barrett, C.J.: Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015)CrossRef
41.
go back to reference Erbas-Cakmak, S., Leigh, D.A., McTernan, C.T., Nussbaumer, A.L.: Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015)CrossRef Erbas-Cakmak, S., Leigh, D.A., McTernan, C.T., Nussbaumer, A.L.: Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015)CrossRef
42.
go back to reference Jiang, X., Duan, H.B., Kahn, S.I., Garcia-Garibay, M.A.: Diffusion-controlled rotation of triptycene in a metal−organic framework (MOF) sheds light on the viscosity of MOF-confined solvent. ACS Cent. Sci. 2(9), 608–613 (2016)CrossRef Jiang, X., Duan, H.B., Kahn, S.I., Garcia-Garibay, M.A.: Diffusion-controlled rotation of triptycene in a metal−organic framework (MOF) sheds light on the viscosity of MOF-confined solvent. ACS Cent. Sci. 2(9), 608–613 (2016)CrossRef
43.
go back to reference Vogelsberga, C.S., Uribe-Romob, F.J., Liptonc, A.S., et al.: Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl. Acad. Sci. U.S.A. 114(52), 13613–13618 (2017)CrossRef Vogelsberga, C.S., Uribe-Romob, F.J., Liptonc, A.S., et al.: Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl. Acad. Sci. U.S.A. 114(52), 13613–13618 (2017)CrossRef
44.
go back to reference Li, J., Yu, X., Xu, M., Liu, W., Sandraz, E., Lan, H., Wang, J., Cohen, S.M.: Metal-organic frameworks as micromotors with tunable engines and brakes. J. Am. Chem. Soc. 139, 611–614 (2017)CrossRef Li, J., Yu, X., Xu, M., Liu, W., Sandraz, E., Lan, H., Wang, J., Cohen, S.M.: Metal-organic frameworks as micromotors with tunable engines and brakes. J. Am. Chem. Soc. 139, 611–614 (2017)CrossRef
45.
go back to reference Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S., Matsui, H.: Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11, 1081–1085 (2012)CrossRef Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S., Matsui, H.: Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11, 1081–1085 (2012)CrossRef
46.
go back to reference Lu, Y., Yan, B.: A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium (III) complexes. Chem. Commun. 50, 13323–13326 (2014)CrossRef Lu, Y., Yan, B.: A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium (III) complexes. Chem. Commun. 50, 13323–13326 (2014)CrossRef
47.
go back to reference Della Rocca, J., Liu, D.M., Lin, W.B.: Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011)CrossRef Della Rocca, J., Liu, D.M., Lin, W.B.: Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011)CrossRef
48.
go back to reference Lu, Y., Yan, B.: An efficient and sensitive fluorescent pH sensor based on amino functional metal–organic frameworks in aqueous environment. Dalton Trans. 45, 7078–7084 (2016)CrossRef Lu, Y., Yan, B.: An efficient and sensitive fluorescent pH sensor based on amino functional metal–organic frameworks in aqueous environment. Dalton Trans. 45, 7078–7084 (2016)CrossRef
49.
go back to reference Xing, K., Fan, R., Wang, F., Nie, H., Du, X., Gai, S., Wang, P., Yang, Y.: Dual-stimulus-triggered programmable drug release and luminescent ratiometric pH sensing from chemically stable biocompatible zinc metal-organic framework. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b06270 Xing, K., Fan, R., Wang, F., Nie, H., Du, X., Gai, S., Wang, P., Yang, Y.: Dual-stimulus-triggered programmable drug release and luminescent ratiometric pH sensing from chemically stable biocompatible zinc metal-organic framework. ACS Appl. Mater. Interfaces (2018). https://​doi.​org/​10.​1021/​acsami.​8b06270
50.
go back to reference Harbuzaru, B.V., Corma, A., Rey, F., Jordá, J.L., Ananias, D., Carlos, L.D., Rocha, J.: A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angew. Chem. Int. Ed. 48, 6476–6479 (2009)CrossRef Harbuzaru, B.V., Corma, A., Rey, F., Jordá, J.L., Ananias, D., Carlos, L.D., Rocha, J.: A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angew. Chem. Int. Ed. 48, 6476–6479 (2009)CrossRef
51.
go back to reference Meng, Q., Xin, X., Zhang, L., Dai, F., Wang, R., Sun, D.: A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. J. Mater. Chem. A 3, 24016–24021 (2015)CrossRef Meng, Q., Xin, X., Zhang, L., Dai, F., Wang, R., Sun, D.: A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. J. Mater. Chem. A 3, 24016–24021 (2015)CrossRef
53.
go back to reference Aguilera-Sigalat, J., Bradshaw, D.: A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification. Chem. Commun. 50, 4711–4713 (2014)CrossRef Aguilera-Sigalat, J., Bradshaw, D.: A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification. Chem. Commun. 50, 4711–4713 (2014)CrossRef
54.
go back to reference He, C., Lu, K., Lin, W.: Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 136(35), 12253–12256 (2014)CrossRef He, C., Lu, K., Lin, W.: Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 136(35), 12253–12256 (2014)CrossRef
55.
go back to reference Deibert, B.J., Li, J.: A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chem. Commun. 50, 9636–9639 (2014)CrossRef Deibert, B.J., Li, J.: A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chem. Commun. 50, 9636–9639 (2014)CrossRef
56.
go back to reference Bloch, E.D., Britt, D., Cl, Lee, et al.: Metal insertion in a microporous metal−organic framework lined with 2,2′-bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010)CrossRef Bloch, E.D., Britt, D., Cl, Lee, et al.: Metal insertion in a microporous metal−organic framework lined with 2,2′-bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010)CrossRef
57.
go back to reference Yi, F.Y., Chen, D., Wu, M.K., Han, L., Jiang, H.L.: Chemical sensors based on metal–organic frameworks. Chem Plus Chem 81, 1–17 (2016) Yi, F.Y., Chen, D., Wu, M.K., Han, L., Jiang, H.L.: Chemical sensors based on metal–organic frameworks. Chem Plus Chem 81, 1–17 (2016)
58.
go back to reference Qi, X.L., Lin, R.B., Chen, Q., Lin, J.B., Zhang, J.P., Chen, X.M.: A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chem. Sci. 2, 2214–2218 (2011) Qi, X.L., Lin, R.B., Chen, Q., Lin, J.B., Zhang, J.P., Chen, X.M.: A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chem. Sci. 2, 2214–2218 (2011)
59.
go back to reference Xiao, J., Wu, Y., Li, M., Liu, B.Y., Huang, X.C., Li, D.: Crystalline structural intermediates of a breathing metal–organic framework that functions as a luminescent sensor and gas reservoir. Chem. Eur. J. 19, 1891–1895 (2013)CrossRef Xiao, J., Wu, Y., Li, M., Liu, B.Y., Huang, X.C., Li, D.: Crystalline structural intermediates of a breathing metal–organic framework that functions as a luminescent sensor and gas reservoir. Chem. Eur. J. 19, 1891–1895 (2013)CrossRef
60.
go back to reference Zhang, M., Feng, G., Song, Z., Zhou, Y.P., et al.: Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136, 7241–7244 (2014)CrossRef Zhang, M., Feng, G., Song, Z., Zhou, Y.P., et al.: Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136, 7241–7244 (2014)CrossRef
61.
go back to reference Jin, Z., He, H., Zhao, H.: A luminescent metal–organic framework for sensing methanol in ethanol solution. Dalton Trans. 42, 13335–13338 (2013)CrossRef Jin, Z., He, H., Zhao, H.: A luminescent metal–organic framework for sensing methanol in ethanol solution. Dalton Trans. 42, 13335–13338 (2013)CrossRef
62.
go back to reference Wang, N.H., Jiang, S.Q., Lu, Q.Y., Zhou, Z.Y., et al.: A pillar-layer MOF for detection of small molecule acetone and metal ions in dilute solution. RSC Adv. 5, 48881–48884 (2015)CrossRef Wang, N.H., Jiang, S.Q., Lu, Q.Y., Zhou, Z.Y., et al.: A pillar-layer MOF for detection of small molecule acetone and metal ions in dilute solution. RSC Adv. 5, 48881–48884 (2015)CrossRef
63.
go back to reference Wang, D., Zhang, L., Li, G., Huo, Q., Liu, Y.: Luminescent MOF material based on cadmium(II) and mixed ligands: application for sensing volatile organic solvent molecules. RSC Adv. 5, 18087–18091 (2015)CrossRef Wang, D., Zhang, L., Li, G., Huo, Q., Liu, Y.: Luminescent MOF material based on cadmium(II) and mixed ligands: application for sensing volatile organic solvent molecules. RSC Adv. 5, 18087–18091 (2015)CrossRef
64.
go back to reference Wu, P., Liu, Y., Li, Y., Jiang, M., Li, X.I., Shia, Y., Wang, J.: Cadmium(II)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J. Mater. Chem. A 4, 16349–16355 (2016)CrossRef Wu, P., Liu, Y., Li, Y., Jiang, M., Li, X.I., Shia, Y., Wang, J.: Cadmium(II)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J. Mater. Chem. A 4, 16349–16355 (2016)CrossRef
65.
go back to reference Müller, P., Wisser, F.M., Bon, V., Grünker, R., Senkovska, I., Kaskela, S.: Post-synthetic paddle-wheel crosslinking and functionalization of 1,3-phenylenebis(azanetriyl)tetrabenzoate based MOFs. Chem. Mater. 27, 2460–2467 (2015)CrossRef Müller, P., Wisser, F.M., Bon, V., Grünker, R., Senkovska, I., Kaskela, S.: Post-synthetic paddle-wheel crosslinking and functionalization of 1,3-phenylenebis(azanetriyl)tetrabenzoate based MOFs. Chem. Mater. 27, 2460–2467 (2015)CrossRef
66.
go back to reference Yi, F.Y., Chen, J., Wang, S.C., Gu, M., Han, L.: A heterobimetallic metal-organic framework as “turn-on” sensor toward DMF. Chem. Commun. 54, 8233–8236 (2018) Yi, F.Y., Chen, J., Wang, S.C., Gu, M., Han, L.: A heterobimetallic metal-organic framework as “turn-on” sensor toward DMF. Chem. Commun. 54, 8233–8236 (2018)
67.
go back to reference Yamazoe, N., Shimizu, Y.: Humidity sensors: principles and applications. Sens. Actuators 10, 379–398 (1986)CrossRef Yamazoe, N., Shimizu, Y.: Humidity sensors: principles and applications. Sens. Actuators 10, 379–398 (1986)CrossRef
68.
go back to reference Tetelin, A., Pellet, C., LavilleC, Kaoua G.N.: Fast response humidity sensors for a medical microsystem. Sens. Actuators B 91, 211–218 (2003)CrossRef Tetelin, A., Pellet, C., LavilleC, Kaoua G.N.: Fast response humidity sensors for a medical microsystem. Sens. Actuators B 91, 211–218 (2003)CrossRef
69.
go back to reference Buvailo, A.I., Xing, Y., Hines, J., Dollahon, N., Borguet, E.: TiO2/LiCl-based nanostructured thin film for humidity sensor applications. ACS Appl. Mater. Interfaces 3, 528–533 (2011)CrossRef Buvailo, A.I., Xing, Y., Hines, J., Dollahon, N., Borguet, E.: TiO2/LiCl-based nanostructured thin film for humidity sensor applications. ACS Appl. Mater. Interfaces 3, 528–533 (2011)CrossRef
70.
go back to reference Ohira, S.I., Dasgupta, P.K., Schug, K.A.: Fiber optic sensor for simultaneous determination of atmospheric nitrogen dioxide, ozone, and relative humidity. Anal. Chem. 81, 4183–4191 (2009)CrossRef Ohira, S.I., Dasgupta, P.K., Schug, K.A.: Fiber optic sensor for simultaneous determination of atmospheric nitrogen dioxide, ozone, and relative humidity. Anal. Chem. 81, 4183–4191 (2009)CrossRef
71.
go back to reference Neumeier, S., Echterhof, T., Pfeifer, H., Simon, U.: Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere. Sens. Actuators B 134, 171–175 (2008)CrossRef Neumeier, S., Echterhof, T., Pfeifer, H., Simon, U.: Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere. Sens. Actuators B 134, 171–175 (2008)CrossRef
72.
go back to reference Zhu, W.H., Wang, Z.M., Gao, S.: Two 3D porous lanthanide-fumarate-oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de- and rehydration. Inorg. Chem. 4, 1337–1342 (2007)CrossRef Zhu, W.H., Wang, Z.M., Gao, S.: Two 3D porous lanthanide-fumarate-oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de- and rehydration. Inorg. Chem. 4, 1337–1342 (2007)CrossRef
73.
go back to reference Tiano, A.L., Koenigsmann, C., Santulli, A.C., Wong S.S.: Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem. Commun. 46, 8093–8130 (2010)CrossRef Tiano, A.L., Koenigsmann, C., Santulli, A.C., Wong S.S.: Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem. Commun. 46, 8093–8130 (2010)CrossRef
74.
go back to reference Gao, Y., Jing, P., Yan, N., Hilbers, M., Zhang, H., Rothenberg, G., Tanase, S.: Dual-mode humidity detection using a lanthanide-based metal–organic framework: towards multifunctional humidity sensors. Chem. Commun. 53, 4465–4468 (2017)CrossRef Gao, Y., Jing, P., Yan, N., Hilbers, M., Zhang, H., Rothenberg, G., Tanase, S.: Dual-mode humidity detection using a lanthanide-based metal–organic framework: towards multifunctional humidity sensors. Chem. Commun. 53, 4465–4468 (2017)CrossRef
75.
go back to reference Andrew, K.F., Foster, D., Richardson, F.S.: Comparison of 7FJ ← 5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry. Chem. Phys. Lett. 95, 507–511 (1983)CrossRef Andrew, K.F., Foster, D., Richardson, F.S.: Comparison of 7FJ ← 5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry. Chem. Phys. Lett. 95, 507–511 (1983)CrossRef
76.
go back to reference Cheng, H.H., Hu, Y., Zhao, F., Dong, Z.L., Wang, Y.H., Chen, N., Zhang, Z.P., Qu, L.T.: Moisture-activated torsional graphene-fiber motor. Adv. Mater. 26, 2909–2913 (2014)CrossRef Cheng, H.H., Hu, Y., Zhao, F., Dong, Z.L., Wang, Y.H., Chen, N., Zhang, Z.P., Qu, L.T.: Moisture-activated torsional graphene-fiber motor. Adv. Mater. 26, 2909–2913 (2014)CrossRef
77.
go back to reference Zhao, F., Wang, L.X., Zhao, Y., Qu, L.T., Dai, L.M.: Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 29, 1604972 (2017)CrossRef Zhao, F., Wang, L.X., Zhao, Y., Qu, L.T., Dai, L.M.: Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 29, 1604972 (2017)CrossRef
78.
go back to reference Zhao, F., Cheng, H.H., Zhang, Z.P., Jiang, L., Qu, L.T.: Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015)CrossRef Zhao, F., Cheng, H.H., Zhang, Z.P., Jiang, L., Qu, L.T.: Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015)CrossRef
79.
go back to reference Zhao, F., Liang, Y., Cheng, H.H., Jiang, L., Qu, L.T.: Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9, 912–916 (2016)CrossRef Zhao, F., Liang, Y., Cheng, H.H., Jiang, L., Qu, L.T.: Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9, 912–916 (2016)CrossRef
80.
go back to reference Allendorf, M.D., Foster, M.E., Leonard, F., Stavila, V., Feng, P.L., Doty, F.P., Leong, K., Ma, E.Y., Johnston, S.R., Talin, A.A.: Guest-induced emergent properties in metal–organic frameworks. J. Phys. Chem. Lett. 6, 1182–1195 (2015)CrossRef Allendorf, M.D., Foster, M.E., Leonard, F., Stavila, V., Feng, P.L., Doty, F.P., Leong, K., Ma, E.Y., Johnston, S.R., Talin, A.A.: Guest-induced emergent properties in metal–organic frameworks. J. Phys. Chem. Lett. 6, 1182–1195 (2015)CrossRef
Metadata
Title
Metal-Organic Framework Composites IPMC Sensors and Actuators
Authors
Bianca Maranescu
Aurelia Visa
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13728-1_1

Premium Partners