Skip to main content
Top
Published in: Microsystem Technologies 5/2019

20-11-2017 | Technical Paper

Metal to semimetal conversion by band structure engineering of SWCNT by DNA nucleobase functionalization

Authors: Swati Sinha, Kunal Biswas, Debashis De, Jaya Bandyopadhyay, Angsuman Sarkar

Published in: Microsystem Technologies | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pristine metallic single-walled carbon nanotubes (6, 0), surface engineered with pyrimidine type DNA nucleobases, thymine and cytosine respectively, are transformed into semimetal forms by band structure engineering of the nanotubes. The hybrid systems are designed using ATK–VNL simulation software. Band structure and zero bias transmission spectra analysis witness a very small overlap between the conduction and valence bands around the Fermi level. IV-characteristic curves also support the semimetallic nature of SWCNT–DNA nucleobase coupling. The altered electronic structure of SWCNT is achieved due to strong chemisorption imparted by hydrogenation of DNA nucleobases which induce partial sp3 hybridization in the nanotube structure. Metal to semimetal conversion results in conductivity modulation in SWCNT and it has several applications in various fields like nano-electronics including NEMS design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference An KH, Lee YH (2006) Electronic-structure engineering of carbon nanotubes. NANO 1(02):115–138CrossRef An KH, Lee YH (2006) Electronic-structure engineering of carbon nanotubes. NANO 1(02):115–138CrossRef
go back to reference An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11(5):387–392CrossRef An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11(5):387–392CrossRef
go back to reference Anantram MP, Leonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69(3):507CrossRef Anantram MP, Leonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69(3):507CrossRef
go back to reference Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605–615CrossRef Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605–615CrossRef
go back to reference Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958CrossRef Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958CrossRef
go back to reference Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17(1):17–29CrossRef Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17(1):17–29CrossRef
go back to reference Bansal R, Clark JV (2012) Lumped modeling of carbon nanotubes for M/NEMS simulation. Microsyst Technol 18(12):1963–1970CrossRef Bansal R, Clark JV (2012) Lumped modeling of carbon nanotubes for M/NEMS simulation. Microsyst Technol 18(12):1963–1970CrossRef
go back to reference Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92CrossRef Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92CrossRef
go back to reference Basiuk VA, Andrade-Salas A (2017) Noncovalent interactions of nucleic acid bases with fullerene C60 and short carbon nanotube models: a dispersion-corrected DFT study. Mol Simul 43(3):205–212CrossRef Basiuk VA, Andrade-Salas A (2017) Noncovalent interactions of nucleic acid bases with fullerene C60 and short carbon nanotube models: a dispersion-corrected DFT study. Mol Simul 43(3):205–212CrossRef
go back to reference Bergman DJ, Stroud D (1992) Physical properties of macroscopically inhomogeneous media. Solid state physics 46:147–269CrossRef Bergman DJ, Stroud D (1992) Physical properties of macroscopically inhomogeneous media. Solid state physics 46:147–269CrossRef
go back to reference Blase X, Benedict LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72(12):1878CrossRef Blase X, Benedict LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72(12):1878CrossRef
go back to reference Boghossian AA, Zhang J, Barone PW, Reuel NF, Kim JH, Heller DA, Zhang CT (2011) Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem 4(7):848–863CrossRef Boghossian AA, Zhang J, Barone PW, Reuel NF, Kim JH, Heller DA, Zhang CT (2011) Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem 4(7):848–863CrossRef
go back to reference Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401CrossRef Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401CrossRef
go back to reference Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31(10):6207CrossRef Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31(10):6207CrossRef
go back to reference Chehelamirani M, da Silva MC, Salahub DR (2017) Electronic properties of carbon nanotubes complexed with a DNA nucleotide. Phys Chem Chem Phys 19(10):7333–7342CrossRef Chehelamirani M, da Silva MC, Salahub DR (2017) Electronic properties of carbon nanotubes complexed with a DNA nucleotide. Phys Chem Chem Phys 19(10):7333–7342CrossRef
go back to reference Chen XP, Yang N, Jiang JK, Liang QH, Yang DG, Zhang GQ, Ren TL (2015) Ab initio study of temperature, humidity, and covalent functionalization-induced bandgap change of single-walled carbon nanotubes. IEEE Electron Device Lett 36(6):606–608CrossRef Chen XP, Yang N, Jiang JK, Liang QH, Yang DG, Zhang GQ, Ren TL (2015) Ab initio study of temperature, humidity, and covalent functionalization-induced bandgap change of single-walled carbon nanotubes. IEEE Electron Device Lett 36(6):606–608CrossRef
go back to reference Chung DS, Choi WB, Kang JH, Kim HY, Han IT, Park YS, Kim JM (2000) Field emission from 4.5 in. single-walled and multiwalled carbon nanotube films. J Vac Sci Technol B 18(2):1054–1058CrossRef Chung DS, Choi WB, Kang JH, Kim HY, Han IT, Park YS, Kim JM (2000) Field emission from 4.5 in. single-walled and multiwalled carbon nanotube films. J Vac Sci Technol B 18(2):1054–1058CrossRef
go back to reference Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709CrossRef Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709CrossRef
go back to reference De Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180CrossRef De Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180CrossRef
go back to reference Emmenegger C, Mauron P, Sudan P, Wenger P, Hermann V, Gallay R, Züttel A (2003) Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J Power Sources 124(1):321–329CrossRef Emmenegger C, Mauron P, Sudan P, Wenger P, Hermann V, Gallay R, Züttel A (2003) Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J Power Sources 124(1):321–329CrossRef
go back to reference Farrokhabadi A, Koochi A, Abadyan M (2014) Modeling the instability of CNT tweezers using a continuum model. Microsyst Technol 20(2):291–302CrossRef Farrokhabadi A, Koochi A, Abadyan M (2014) Modeling the instability of CNT tweezers using a continuum model. Microsyst Technol 20(2):291–302CrossRef
go back to reference Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10):1775–1787CrossRef Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10):1775–1787CrossRef
go back to reference Ghosh S, Patel N, Chakrabarti R (2016) Probing the salt concentration dependent nucleobase distribution in a single-stranded DNA–single-walled carbon nanotube hybrid with molecular dynamics. J Phys Chem B 120(3):455–466CrossRef Ghosh S, Patel N, Chakrabarti R (2016) Probing the salt concentration dependent nucleobase distribution in a single-stranded DNA–single-walled carbon nanotube hybrid with molecular dynamics. J Phys Chem B 120(3):455–466CrossRef
go back to reference Gomez LM, Kumar A, Zhang Y, Ryu K, Badmaev A, Zhou C (2009) Scalable light-induced metal to semiconductor conversion of carbon nanotubes. Nano Lett 9(10):3592–3598CrossRef Gomez LM, Kumar A, Zhang Y, Ryu K, Badmaev A, Zhou C (2009) Scalable light-induced metal to semiconductor conversion of carbon nanotubes. Nano Lett 9(10):3592–3598CrossRef
go back to reference Goodwin CM, Lewis GG, Fiorella A, Ellison MD, Kohn R (2014) Synthesis and toxicity testing of cysteine-functionalized single-walled carbon nanotubes with Caenorhabditis elegans. RSC Advances 4(12):5893–5900CrossRef Goodwin CM, Lewis GG, Fiorella A, Ellison MD, Kohn R (2014) Synthesis and toxicity testing of cysteine-functionalized single-walled carbon nanotubes with Caenorhabditis elegans. RSC Advances 4(12):5893–5900CrossRef
go back to reference Guo Q, Yoshida A (1994) Temperature dependence of band gap change in InN and AlN. Jpn J Appl Phys 33(5R):2453CrossRef Guo Q, Yoshida A (1994) Temperature dependence of band gap change in InN and AlN. Jpn J Appl Phys 33(5R):2453CrossRef
go back to reference Hahm JI, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4(1):51–54CrossRef Hahm JI, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4(1):51–54CrossRef
go back to reference Haug H, Jauho AP (2008) Quantum kinetics in transport and optics of semiconductors. In: Cardona M (ed) Quantum kinetics in transport and optics of semiconductors, vol 2. Springer, Berlin Haug H, Jauho AP (2008) Quantum kinetics in transport and optics of semiconductors. In: Cardona M (ed) Quantum kinetics in transport and optics of semiconductors, vol 2. Springer, Berlin
go back to reference He L, Toda M, Kawai Y, Miyashita H, Omori M, Hashida T, Ono T (2014) Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis. Microsyst Technol 20(2):201–208CrossRef He L, Toda M, Kawai Y, Miyashita H, Omori M, Hashida T, Ono T (2014) Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis. Microsyst Technol 20(2):201–208CrossRef
go back to reference Journet C, Maser WK, Bernier P, Loiseau A, De La Chapelle ML, Lefrant DLS, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758CrossRef Journet C, Maser WK, Bernier P, Loiseau A, De La Chapelle ML, Lefrant DLS, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758CrossRef
go back to reference Kassegne S, Mehta B, Khosla A (2015) Manufacturing of high aspect-ratio 3-dimensional PolyFerroCNT nanocomposite polymer electrodes. Microsyst Technol 21(8):1619–1625CrossRef Kassegne S, Mehta B, Khosla A (2015) Manufacturing of high aspect-ratio 3-dimensional PolyFerroCNT nanocomposite polymer electrodes. Microsyst Technol 21(8):1619–1625CrossRef
go back to reference Kim KS, Bae DJ, Kim JR, Park KA, Lim SC, Kim JJ, Lee YH (2002) Modification of electronic structures of a carbon nanotube by hydrogen functionalization. Adv Mater 14(24):1818–1821CrossRef Kim KS, Bae DJ, Kim JR, Park KA, Lim SC, Kim JJ, Lee YH (2002) Modification of electronic structures of a carbon nanotube by hydrogen functionalization. Adv Mater 14(24):1818–1821CrossRef
go back to reference Kim KK, Bae JJ, Park HK, Kim SM, Geng HZ, Park KA, Lee YH (2008) Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping. J Am Chem Soc 130(38):12757–12761CrossRef Kim KK, Bae JJ, Park HK, Kim SM, Geng HZ, Park KA, Lee YH (2008) Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping. J Am Chem Soc 130(38):12757–12761CrossRef
go back to reference Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625CrossRef Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625CrossRef
go back to reference Kosevich MV, Zobnina VG, Stepanian SG, Karachevtsev VA, Adamowicz L (2016) The effect of protonation of cytosine and adenine on their interactions with carbon nanotubes. J Mol Gr Model 70:77–84CrossRef Kosevich MV, Zobnina VG, Stepanian SG, Karachevtsev VA, Adamowicz L (2016) The effect of protonation of cytosine and adenine on their interactions with carbon nanotubes. J Mol Gr Model 70:77–84CrossRef
go back to reference Kumar M (2017) Negative differential resistance and switching behavior in single wall bamboo-shape carbon nanotubes based molecular device: a first-principles study nanoscale device design. Mater Res Bull 91:148–154CrossRef Kumar M (2017) Negative differential resistance and switching behavior in single wall bamboo-shape carbon nanotubes based molecular device: a first-principles study nanoscale device design. Mater Res Bull 91:148–154CrossRef
go back to reference Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4(2):245–247CrossRef Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4(2):245–247CrossRef
go back to reference Li XF, Chen KQ, Wang L, Long MQ, Zou BS, Shuai Z (2007) Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. Appl Phys Lett 91(13):133511CrossRef Li XF, Chen KQ, Wang L, Long MQ, Zou BS, Shuai Z (2007) Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. Appl Phys Lett 91(13):133511CrossRef
go back to reference Lu G, Maragakis P, Kaxiras E (2005) Carbon nanotube interaction with DNA. Nano Lett 5(5):897–900CrossRef Lu G, Maragakis P, Kaxiras E (2005) Carbon nanotube interaction with DNA. Nano Lett 5(5):897–900CrossRef
go back to reference Lu G, Yu K, Wen Z, Chen J (2013) Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5(4):1353–1368CrossRef Lu G, Yu K, Wen Z, Chen J (2013) Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5(4):1353–1368CrossRef
go back to reference Magadur G, Bouanis F, Norman E, Guillot R, Lauret JS, Huc V, Mallah T (2012) Electrical-field-induced structural change and charge transfer of lanthanide–salophen complexes assembled on carbon nanotube field effect transistor devices. Chem Commun 48(72):9071–9073CrossRef Magadur G, Bouanis F, Norman E, Guillot R, Lauret JS, Huc V, Mallah T (2012) Electrical-field-induced structural change and charge transfer of lanthanide–salophen complexes assembled on carbon nanotube field effect transistor devices. Chem Commun 48(72):9071–9073CrossRef
go back to reference Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors—a review. IEEE Sens J 7(2):266–284CrossRef Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors—a review. IEEE Sens J 7(2):266–284CrossRef
go back to reference Maiti A (2003) Carbon nanotubes: Bandgap engineering with strain. Nat Mater 2(7):440–442CrossRef Maiti A (2003) Carbon nanotubes: Bandgap engineering with strain. Nat Mater 2(7):440–442CrossRef
go back to reference Ogunro OO, Nicolas CI, Mintz EA, Wang XQ (2012) Band gap opening in the cycloaddition functionalization of carbon nanotubes. ACS Macro Lett 1(4):524–528CrossRef Ogunro OO, Nicolas CI, Mintz EA, Wang XQ (2012) Band gap opening in the cycloaddition functionalization of carbon nanotubes. ACS Macro Lett 1(4):524–528CrossRef
go back to reference Pan X, Cai QJ, Li CM, Zhang Q, Chan-Park MB (2009) Species enrichment of SWNTs with pyrene alkylamide derivatives: is the alkyl chain length important? Nanotechnology 20(30):305601CrossRef Pan X, Cai QJ, Li CM, Zhang Q, Chan-Park MB (2009) Species enrichment of SWNTs with pyrene alkylamide derivatives: is the alkyl chain length important? Nanotechnology 20(30):305601CrossRef
go back to reference Park SH (2002) Erratum: intraband relaxation time in wurtzite InGaN/GaN quantum-well structures with (101 0) crystal orientation. Appl Phys Lett 81(6):1149CrossRef Park SH (2002) Erratum: intraband relaxation time in wurtzite InGaN/GaN quantum-well structures with (101 0) crystal orientation. Appl Phys Lett 81(6):1149CrossRef
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865CrossRef
go back to reference Plata DL, Gschwend PM, Reddy CM (2008) Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment. Nanotechnology 19(18):185706CrossRef Plata DL, Gschwend PM, Reddy CM (2008) Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment. Nanotechnology 19(18):185706CrossRef
go back to reference Raghuveer MS, Kumar A, Frederick MJ, Louie GP, Ganesan PG, Ramanath G (2006) Site-selective functionalization of carbon nanotubes. Adv Mater 18(5):547–552CrossRef Raghuveer MS, Kumar A, Frederick MJ, Louie GP, Ganesan PG, Ramanath G (2006) Site-selective functionalization of carbon nanotubes. Adv Mater 18(5):547–552CrossRef
go back to reference Reich S, Thomsen C, Ordejón P (2002) Electronic band structure of isolated and bundled carbon nanotubes. Phys Rev B 65(15):155411CrossRef Reich S, Thomsen C, Ordejón P (2002) Electronic band structure of isolated and bundled carbon nanotubes. Phys Rev B 65(15):155411CrossRef
go back to reference Ridley BK, Watkins TB (1961) The possibility of negative resistance effects in semiconductors. Proc Phys Soc 78(2):293CrossRef Ridley BK, Watkins TB (1961) The possibility of negative resistance effects in semiconductors. Proc Phys Soc 78(2):293CrossRef
go back to reference Samanta PN, Das KK (2014) Electron transport properties of zigzag single walled tin carbide nanotubes. Comput Mater Sci 81:326–331CrossRef Samanta PN, Das KK (2014) Electron transport properties of zigzag single walled tin carbide nanotubes. Comput Mater Sci 81:326–331CrossRef
go back to reference Sedighi HM, Farjam N (2016) A modified model for dynamic instability of CNT based actuators by considering rippling deformation, tip-charge concentration and Casimir attraction. In: Microsystem technologies, pp 1–17 Sedighi HM, Farjam N (2016) A modified model for dynamic instability of CNT based actuators by considering rippling deformation, tip-charge concentration and Casimir attraction. In: Microsystem technologies, pp 1–17
go back to reference Sharma A, Gifford BJ, Kilina S (2017) Tip functionalization of finite single-walled carbon nanotubes and its impact on the ground and excited state electronic structure. J Phys Chem C 121(15):8601–8612CrossRef Sharma A, Gifford BJ, Kilina S (2017) Tip functionalization of finite single-walled carbon nanotubes and its impact on the ground and excited state electronic structure. J Phys Chem C 121(15):8601–8612CrossRef
go back to reference Shobha BN, Muniraj NJR (2015) Design, modeling and performance analysis of carbon nanotube with DNA strands as biosensor for prostate cancer. Microsyst Technol 21(4):791–800CrossRef Shobha BN, Muniraj NJR (2015) Design, modeling and performance analysis of carbon nanotube with DNA strands as biosensor for prostate cancer. Microsyst Technol 21(4):791–800CrossRef
go back to reference Sinha S, Bandyopadhyay J, De D (2016a) DNA computing using carbon nanotube-DNA hybrid nanostructure. In: Handbook of research on natural computing for optimization problems. IGI Global, pp 744–774 Sinha S, Bandyopadhyay J, De D (2016a) DNA computing using carbon nanotube-DNA hybrid nanostructure. In: Handbook of research on natural computing for optimization problems. IGI Global, pp 744–774
go back to reference Sinha S, Biswas K, Purkayastha T, Bandyopadhyay J, Sarkar A, De D (2016b) On the electronic properties of guanine functionalized zigzag single-walled carbon-nanotube. J Nanoeng Nanomanuf 6(1):3–8CrossRef Sinha S, Biswas K, Purkayastha T, Bandyopadhyay J, Sarkar A, De D (2016b) On the electronic properties of guanine functionalized zigzag single-walled carbon-nanotube. J Nanoeng Nanomanuf 6(1):3–8CrossRef
go back to reference Song X, Zhao H (2014) Computational study on bonding of carbon nanotubes onto metallic substrates. Microsyst Technol 20(3):397–402CrossRef Song X, Zhao H (2014) Computational study on bonding of carbon nanotubes onto metallic substrates. Microsyst Technol 20(3):397–402CrossRef
go back to reference Song X, Liu J, Li H, Zhao L (2015) Atomistic simulation of electrical enhanced nanowelding of carbon nanotube to metal. Microsyst Technol 21(10):2215–2219CrossRef Song X, Liu J, Li H, Zhao L (2015) Atomistic simulation of electrical enhanced nanowelding of carbon nanotube to metal. Microsyst Technol 21(10):2215–2219CrossRef
go back to reference Strano MS, Huffman CB, Moore VC, O’Connell MJ, Haroz EH, Hubbard J, Hauge RH (2003) Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J Phys Chem B 107(29):6979–6985CrossRef Strano MS, Huffman CB, Moore VC, O’Connell MJ, Haroz EH, Hubbard J, Hauge RH (2003) Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J Phys Chem B 107(29):6979–6985CrossRef
go back to reference Sun W, Zhao J, Du Z (2017) Density-functional-theory-based Study of interaction of DNA/RNA nucleobases with hydroxyl-and carboxyl-functionalized armchair (6, 6) CNT. Comput Theor Chem 1102:60–68CrossRef Sun W, Zhao J, Du Z (2017) Density-functional-theory-based Study of interaction of DNA/RNA nucleobases with hydroxyl-and carboxyl-functionalized armchair (6, 6) CNT. Comput Theor Chem 1102:60–68CrossRef
go back to reference Sutton AP (1993) Electronic structure of materials. Clarendon Press, Oxford Sutton AP (1993) Electronic structure of materials. Clarendon Press, Oxford
go back to reference Tani H, Konishi K, Norimatsu W, Kusunoki M, Tagawa N (2015) Application of vertically aligned carbon nanotubes on burnishing slider in cleaning process of magnetic disk surfaces. Microsyst Technol 21(1):295–300CrossRef Tani H, Konishi K, Norimatsu W, Kusunoki M, Tagawa N (2015) Application of vertically aligned carbon nanotubes on burnishing slider in cleaning process of magnetic disk surfaces. Microsyst Technol 21(1):295–300CrossRef
go back to reference Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63(24):245407CrossRef Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63(24):245407CrossRef
go back to reference Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRef Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRef
go back to reference Zhang WJ, Wang ML (2016) DNA-functionalized single-walled carbon nanotube-based sensor array for breath analysis. Int J Electron Electron Eng 4(2):177–180CrossRef Zhang WJ, Wang ML (2016) DNA-functionalized single-walled carbon nanotube-based sensor array for breath analysis. Int J Electron Electron Eng 4(2):177–180CrossRef
go back to reference Zhang J, Chen Y, Fan T, Lai C, Zhu Y (2014) Vertically aligned multi-walled CNT arrays coated by gold nanoparticles for surface-enhanced Raman scattering. Microsyst Technol 20(1):113–117CrossRef Zhang J, Chen Y, Fan T, Lai C, Zhu Y (2014) Vertically aligned multi-walled CNT arrays coated by gold nanoparticles for surface-enhanced Raman scattering. Microsyst Technol 20(1):113–117CrossRef
go back to reference Zhao J, Chen Z, Zhou Z, Park H, Schleyer PVR, Lu JP (2005) Engineering the electronic structure of single-walled carbon nanotubes by chemical functionalization. ChemPhysChem 6(4):598–601CrossRef Zhao J, Chen Z, Zhou Z, Park H, Schleyer PVR, Lu JP (2005) Engineering the electronic structure of single-walled carbon nanotubes by chemical functionalization. ChemPhysChem 6(4):598–601CrossRef
go back to reference Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Tassi NG (2003a) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRef Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Tassi NG (2003a) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRef
go back to reference Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Samsonidze GG (2003b) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302(5650):1545–1548CrossRef Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Samsonidze GG (2003b) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302(5650):1545–1548CrossRef
go back to reference Zhou H, Lin X, Guo H, Lin S, Sun Y, Xu Y (2017) Ab initio electronic transport study of two-dimensional silicon carbide-based p–n junctions. J Semicond 38(3):033002CrossRef Zhou H, Lin X, Guo H, Lin S, Sun Y, Xu Y (2017) Ab initio electronic transport study of two-dimensional silicon carbide-based p–n junctions. J Semicond 38(3):033002CrossRef
Metadata
Title
Metal to semimetal conversion by band structure engineering of SWCNT by DNA nucleobase functionalization
Authors
Swati Sinha
Kunal Biswas
Debashis De
Jaya Bandyopadhyay
Angsuman Sarkar
Publication date
20-11-2017
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 5/2019
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3628-x

Other articles of this Issue 5/2019

Microsystem Technologies 5/2019 Go to the issue