Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 3/2020

03-06-2019 | Original Article

Methane productivity evaluation of an invasive wetland plant, common reed

Authors: Giang Van Tran, Yuwalee Unpaprom, Rameshprabu Ramaraj

Published in: Biomass Conversion and Biorefinery | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study aims to investigate the potential of substrate for producing biogas from common reed (Phragmites australis), a perennial grass, and provide the techniques to select optimal and reasonable materials with high methane production. By determining the parameters such as chemical oxygen demand (COD), volatile solids (VS), and percentage of element chemicals, carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S) of raw materials henceforth through the TBMP (theoretical biochemical methane potential) via calculations give the maximum methane potential of particular available in feedstock and present by methane yield per unit of mass of feedstock (mlCH4/gVS). In this study, the results were obtained from TBMPThEC and TBMPThCOD that were highest at 460.890 mlCH4/gVS and 130.88 mlCH4/gVS, respectively. The results showed that based on COD calculations, the results were consistent with the ability to create methane in the experiment and based on elemental compositions showed that the further potential to produce methane of feedstock.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wannapokin A, Ramaraj R, Whangchai K, Unpaprom Y (2017) Potential improvement of biogas production from fallen teak leaves with co-digestion of microalgae. 3 Biotech 8:123CrossRef Wannapokin A, Ramaraj R, Whangchai K, Unpaprom Y (2017) Potential improvement of biogas production from fallen teak leaves with co-digestion of microalgae. 3 Biotech 8:123CrossRef
2.
go back to reference Chuanchai A, Ramaraj R (2018) Sustainability assessment of biogas production from buffalo grass and dung: biogas purification and bio-fertilizer. Biotech 8(3):151 Chuanchai A, Ramaraj R (2018) Sustainability assessment of biogas production from buffalo grass and dung: biogas purification and bio-fertilizer. Biotech 8(3):151
3.
go back to reference Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112(2):171–177CrossRef Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112(2):171–177CrossRef
4.
go back to reference Bhuyar P, Ab Rahim MH, Yusoff MM, Maniam GP, Govindan N (2019) A selective microalgae strain for biodiesel production in relation to higher lipid profile. Maejo Int J Energ Environ Comm 1(1):8–14 Bhuyar P, Ab Rahim MH, Yusoff MM, Maniam GP, Govindan N (2019) A selective microalgae strain for biodiesel production in relation to higher lipid profile. Maejo Int J Energ Environ Comm 1(1):8–14
5.
go back to reference Manmai M, Bautista K, Unpaprom Y, Ramaraj R (2019) Optimization of combined pre-treatments on sugarcane leaves for bioethanol production. Maejo Int J Energ Environ Comm 1(1):30–39 Manmai M, Bautista K, Unpaprom Y, Ramaraj R (2019) Optimization of combined pre-treatments on sugarcane leaves for bioethanol production. Maejo Int J Energ Environ Comm 1(1):30–39
6.
go back to reference Krishania M, Vijay VK, Chandra R (2013) Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 57:359–367CrossRef Krishania M, Vijay VK, Chandra R (2013) Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 57:359–367CrossRef
7.
go back to reference Uçkun KE, Stamatelatou K, Antonopoulou G, Lyberatos G (2016) Production of biogas via anaerobic digestion. In: Handbook of biofuels production: processes and technologies: second edition, pp 259–301 Uçkun KE, Stamatelatou K, Antonopoulou G, Lyberatos G (2016) Production of biogas via anaerobic digestion. In: Handbook of biofuels production: processes and technologies: second edition, pp 259–301
8.
go back to reference Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28CrossRef Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28CrossRef
9.
go back to reference Unpaprom Y, Intasaen O, Yongphet P, Ramaraj R (2015) Cultivation of microalga Botryococcus braunii using red Nile tilapia effluent medium for biogas production. J Ecol Environ Sci 3(2):58–65 Unpaprom Y, Intasaen O, Yongphet P, Ramaraj R (2015) Cultivation of microalga Botryococcus braunii using red Nile tilapia effluent medium for biogas production. J Ecol Environ Sci 3(2):58–65
10.
go back to reference Ramaraj R, Dussadee N (2015) Biological purification processes for biogas using algae cultures: a review. J Renew Sustain Energy 4:20–32CrossRef Ramaraj R, Dussadee N (2015) Biological purification processes for biogas using algae cultures: a review. J Renew Sustain Energy 4:20–32CrossRef
11.
go back to reference Rodriguez C, Alaswad A, Benyounis KY, Olabi AG (2017) Pretreatment techniques used in biogas production from grass. Renew Sust Energ Rev 68:1193–1204CrossRef Rodriguez C, Alaswad A, Benyounis KY, Olabi AG (2017) Pretreatment techniques used in biogas production from grass. Renew Sust Energ Rev 68:1193–1204CrossRef
12.
go back to reference Bond T, Templeton MR (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15(4):347–354CrossRef Bond T, Templeton MR (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15(4):347–354CrossRef
13.
go back to reference Kaewdiew J, Ramaraj R, Koonaphapdeelert S, Dussadee N (2019) Assessment of the biogas potential from agricultural waste in northern Thailand. Maejo Int J Energ Environ Comm 1(1):40–47 Kaewdiew J, Ramaraj R, Koonaphapdeelert S, Dussadee N (2019) Assessment of the biogas potential from agricultural waste in northern Thailand. Maejo Int J Energ Environ Comm 1(1):40–47
14.
go back to reference Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. J Waste Manag 33(12):2653–2658CrossRef Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. J Waste Manag 33(12):2653–2658CrossRef
15.
go back to reference Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101(22):8713–8717CrossRef Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101(22):8713–8717CrossRef
16.
go back to reference Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42(1):35–53CrossRef Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42(1):35–53CrossRef
17.
go back to reference Seppala M, Paavola T, Lehtomäki A, Rintala J (2009) Biogas production from boreal herbaceous grasses – specific methane yield and methane yield per hectare. Bioresour Technol 100(12):2952–2958CrossRef Seppala M, Paavola T, Lehtomäki A, Rintala J (2009) Biogas production from boreal herbaceous grasses – specific methane yield and methane yield per hectare. Bioresour Technol 100(12):2952–2958CrossRef
18.
go back to reference Bosch MW, Tamminga S, Post G, Leffering CP, Muylaert JM (1992) Influence of stage of maturity of grass silages on digestion processes in dairy cows. 1. Composition, nylon bag degradation rates, fermentation characteristics, digestibility and intake. Livest Prod Sci 32(3):245–264CrossRef Bosch MW, Tamminga S, Post G, Leffering CP, Muylaert JM (1992) Influence of stage of maturity of grass silages on digestion processes in dairy cows. 1. Composition, nylon bag degradation rates, fermentation characteristics, digestibility and intake. Livest Prod Sci 32(3):245–264CrossRef
19.
go back to reference Bruinenberg MH, Valk H, Korevaar H, Struik PC (2002) Factors affecting digestibility of temperate forages from seminatural grasslands: a review. Grass Forage Sci 57(3):292–301CrossRef Bruinenberg MH, Valk H, Korevaar H, Struik PC (2002) Factors affecting digestibility of temperate forages from seminatural grasslands: a review. Grass Forage Sci 57(3):292–301CrossRef
20.
go back to reference Oleszek M, Król A, Tys J, Matyka M, Kulik M (2014) Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour Technol 156:303–306CrossRef Oleszek M, Król A, Tys J, Matyka M, Kulik M (2014) Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour Technol 156:303–306CrossRef
21.
go back to reference Brix H, Cizkova H (2001) Introduction Phragmites-dominated wetlands, their functions and sustainable use. Aquat Bot 69:87–88CrossRef Brix H, Cizkova H (2001) Introduction Phragmites-dominated wetlands, their functions and sustainable use. Aquat Bot 69:87–88CrossRef
22.
go back to reference Kask U, Kask L, Link S (2013) Combustion characteristics of reed and its suitability as a boiler fuel. Mires Peat 13(5):1–10 Kask U, Kask L, Link S (2013) Combustion characteristics of reed and its suitability as a boiler fuel. Mires Peat 13(5):1–10
23.
go back to reference Brix H, Ye S, Laws EA, Sun D, Li G, Ding X, Pei S (2014) Large-scale management of common reed, Phragmites australis, for paper production: a case study from the Liaohe Delta, China. Ecol Eng 73:760–769CrossRef Brix H, Ye S, Laws EA, Sun D, Li G, Ding X, Pei S (2014) Large-scale management of common reed, Phragmites australis, for paper production: a case study from the Liaohe Delta, China. Ecol Eng 73:760–769CrossRef
24.
go back to reference Shuai W, Chen N, Li B, Zhou D, Ga J (2016) Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass Bioenergy 92:40–47CrossRef Shuai W, Chen N, Li B, Zhou D, Ga J (2016) Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass Bioenergy 92:40–47CrossRef
25.
go back to reference Kao-Kniffin J, Freyre DS, Balser TC (2010) Methane dynamics across wetland plant species. Aquat Bot 93:107–113CrossRef Kao-Kniffin J, Freyre DS, Balser TC (2010) Methane dynamics across wetland plant species. Aquat Bot 93:107–113CrossRef
26.
go back to reference Dunbabin JS, Bowmer KH (1992) Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci Total Environ 111:151–168CrossRef Dunbabin JS, Bowmer KH (1992) Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci Total Environ 111:151–168CrossRef
27.
go back to reference APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC
28.
go back to reference AOAC (2012) Official methods of analysis of AOAC International, 19th edn. AOAC International, Gaithersburg, Maryland AOAC (2012) Official methods of analysis of AOAC International, 19th edn. AOAC International, Gaithersburg, Maryland
29.
go back to reference Vu PT, Unpaprom Y, Ramaraj R (2018) Impact and significance of alkaline-oxidant pretreatment on the enzymatic digestibility of Sphenoclea zeylanica for bioethanol production. Bioresour Technol 247:125–130CrossRef Vu PT, Unpaprom Y, Ramaraj R (2018) Impact and significance of alkaline-oxidant pretreatment on the enzymatic digestibility of Sphenoclea zeylanica for bioethanol production. Bioresour Technol 247:125–130CrossRef
30.
go back to reference Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem Res 44(3):550–552CrossRef Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem Res 44(3):550–552CrossRef
31.
go back to reference O’Rourke JT (1968) Kinetics of anaerobic treatment at reduced temperatures. PhD thesis, Stanford University, California O’Rourke JT (1968) Kinetics of anaerobic treatment at reduced temperatures. PhD thesis, Stanford University, California
32.
go back to reference Boyle WC (1976) Energy recovery from sanitary landfills – a review. In: Microbial energy conversion. Pergamon Press, Oxford, pp 119–138 Boyle WC (1976) Energy recovery from sanitary landfills – a review. In: Microbial energy conversion. Pergamon Press, Oxford, pp 119–138
33.
go back to reference Achinas S, Euverink GJW (2016) Theoretical analysis of biogas potential prediction from agricultural waste. Resource-Efficient Technol 2(3):143–147CrossRef Achinas S, Euverink GJW (2016) Theoretical analysis of biogas potential prediction from agricultural waste. Resource-Efficient Technol 2(3):143–147CrossRef
34.
go back to reference Nielfa A, Cano R, Fdz-Polanco M (2015) Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep 5(1):14–21CrossRef Nielfa A, Cano R, Fdz-Polanco M (2015) Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep 5(1):14–21CrossRef
35.
go back to reference Raposo F, Fernández-Cegrí V, de la Rubia MA, Borja R, Béline F, Cavinato C, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86(8):1088–1098CrossRef Raposo F, Fernández-Cegrí V, de la Rubia MA, Borja R, Béline F, Cavinato C, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86(8):1088–1098CrossRef
36.
go back to reference Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3(2):117–129CrossRef Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3(2):117–129CrossRef
37.
go back to reference Patuzzi F, Mimmo T, Cesco S, Gasparella A, Baratieri M (2013) Common reeds (Phragmites australis) as sustainable energy source: experimental and modelling analysis of torrefaction and pyrolysis processes. GCB Bioenergy 5(4):367–374CrossRef Patuzzi F, Mimmo T, Cesco S, Gasparella A, Baratieri M (2013) Common reeds (Phragmites australis) as sustainable energy source: experimental and modelling analysis of torrefaction and pyrolysis processes. GCB Bioenergy 5(4):367–374CrossRef
38.
go back to reference Baute K, Van Eerd LL, Robinson DE, Sikkema PH, Mushtaq M, Gilroyed BH (2018) Comparing the biomass yield and biogas potential of Phragmites australis with Miscanthus X giganteus and Panicum virgatum grown in Canada. Energies 11(9):2198CrossRef Baute K, Van Eerd LL, Robinson DE, Sikkema PH, Mushtaq M, Gilroyed BH (2018) Comparing the biomass yield and biogas potential of Phragmites australis with Miscanthus X giganteus and Panicum virgatum grown in Canada. Energies 11(9):2198CrossRef
39.
go back to reference Gopalan P, Jensen PD, Batstone DJ (2013) Biochemical methane potential of beef feedlot manure: impact of manure age and storage. J Environ Qual 42(4):1205CrossRef Gopalan P, Jensen PD, Batstone DJ (2013) Biochemical methane potential of beef feedlot manure: impact of manure age and storage. J Environ Qual 42(4):1205CrossRef
40.
go back to reference Li Y, Zhang R, Chen C, Liu G, He Y, Liu X (2013) Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour Technol 149:406–412CrossRef Li Y, Zhang R, Chen C, Liu G, He Y, Liu X (2013) Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour Technol 149:406–412CrossRef
41.
go back to reference Sun C, Cao W, Liu R (2015) Kinetics of methane production from swine manure and buffalo manure. Appl Biochem Biotechnol 177(4):985–995CrossRef Sun C, Cao W, Liu R (2015) Kinetics of methane production from swine manure and buffalo manure. Appl Biochem Biotechnol 177(4):985–995CrossRef
42.
go back to reference Owens JM, Chynoweth D (1993) Biochemical methane potential of MSW components. Water Sci Technol 27(2):1–14CrossRef Owens JM, Chynoweth D (1993) Biochemical methane potential of MSW components. Water Sci Technol 27(2):1–14CrossRef
43.
go back to reference Angelidaki I, Ahring BK (1992) Effects of free long chain fatty acids on thermophilic anaerobic digestion. Appl Biochem Biotechnol 37:808–812 Angelidaki I, Ahring BK (1992) Effects of free long chain fatty acids on thermophilic anaerobic digestion. Appl Biochem Biotechnol 37:808–812
44.
go back to reference Browne JD, Allen E, Murphy JD (2013) Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester. Environ Technol 34(13–14):2027–2038CrossRef Browne JD, Allen E, Murphy JD (2013) Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester. Environ Technol 34(13–14):2027–2038CrossRef
45.
go back to reference Feng L, Li Y, Chen C, Liu X, Xiao X, Ma X, Liu G (2013) Biochemical methane potential (BMP) of vinegar residue and the influence of feed to inoculum ratios on biogas production. Bioresources 8(2):2487–2498CrossRef Feng L, Li Y, Chen C, Liu X, Xiao X, Ma X, Liu G (2013) Biochemical methane potential (BMP) of vinegar residue and the influence of feed to inoculum ratios on biogas production. Bioresources 8(2):2487–2498CrossRef
46.
go back to reference Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31(8):1737–1744CrossRef Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31(8):1737–1744CrossRef
47.
go back to reference Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energ Rev 34:491–500CrossRef Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energ Rev 34:491–500CrossRef
48.
go back to reference Szijarto N, Kadar Z, Varga E, Thomsen AB, Costa-Ferreira M, Réczey K (2009) Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production. Appl Biochem Biotechnol 155:386–396CrossRef Szijarto N, Kadar Z, Varga E, Thomsen AB, Costa-Ferreira M, Réczey K (2009) Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production. Appl Biochem Biotechnol 155:386–396CrossRef
49.
go back to reference Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651CrossRef Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651CrossRef
Metadata
Title
Methane productivity evaluation of an invasive wetland plant, common reed
Authors
Giang Van Tran
Yuwalee Unpaprom
Rameshprabu Ramaraj
Publication date
03-06-2019
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 3/2020
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-019-00451-z

Other articles of this Issue 3/2020

Biomass Conversion and Biorefinery 3/2020 Go to the issue