Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Method

Author : Dr. Shuntaro Sumita

Published in: Modern Classification Theory of Superconducting Gap Nodes

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we introduce modern gap classification theory using group theory (representation theory) and topological argument. First, in Sect. 2.1, we make a remark about some terminologies and notations of finite-group representation theory, which are used throughout the thesis, for the avoidance of confusion. In Sect. 2.2, we introduce the group-theoretical analysis of the superconducting gap on high-symmetry points in the BZ [111]. Next, we explain the topological classification of nodes on the high-symmetry points by using the Wigner criteria and the orthogonality test in Sect. 2.3 [1215]. Also, an intuitive understanding of the classification methods is given by showing simple examples (Sect. 2.4).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Indeed, our topological classification theory (Sect. 2.3) can also be applied to other cases, e.g., noncentrosymmetric superconductors.
 
2
Strictly speaking, \(\alpha \) is a double-valued IR of the finite group \(\bar{\mathcal {M}}^{\varvec{k}} = \mathcal {M}^{\varvec{k}} / \mathbb {T}\) while \(j_z\) is a basis of the continuous group. Therefore there is no one-to-one correspondence between \(\alpha \) and \(j_z\) in some cases. In the \(C_{2v}\) symmetry, for example, the IR \(\alpha = 1 / 2\) includes all normal Bloch states with half-integer total angular momentum \(j_z = \pm 1 / 2, \pm 3 / 2, \pm 5 / 2, \dotsc \). In this thesis, however, we represent \(j_z\) with minimum absolute value, which satisfies \(j_z \downarrow \bar{\mathcal {M}}^{\varvec{k}} = \alpha \), as the angular-momentum counterpart of the IR \(\alpha \).
 
3
The factor system also satisfies the 2-cocycle condition:
$$\begin{aligned} \omega _{\text {ns}}^{l_1 l_2 l_3\varvec{k}}(l_1, l_2) \omega _{\text {ns}}^{l_1 l_2 l_3\varvec{k}}(l_1 l_2, l_3) = \omega _{\text {ns}}^{l_1 l_2 l_3\varvec{k}}(l_1, l_2 l_3) \omega _{\text {ns}}^{l_2 l_3\varvec{k}}(l_2, l_3)^{\phi (l_1)}. \end{aligned}$$
 
4
Here,
$$\begin{aligned} (\mathcal {I} \bar{g} \mathcal {I}) c_{\alpha j}^\dagger (\varvec{k}) (\mathcal {I} \bar{g} \mathcal {I})^{- 1}&= \sum _{j_1} (\mathcal {I} \bar{g}) c_{\alpha j_1}^\dagger (\mathcal {I} \varvec{k}) (\mathcal {I} \bar{g})^{- 1} [\bar{u}_\alpha ^{\varvec{k}}(\mathcal {I})]_{j_1 j} \\&= \sum _{j_1, j_2} \mathcal {I} c_{\alpha j_2}^\dagger (\bar{g} \mathcal {I} \varvec{k}) \mathcal {I}^{- 1} [\bar{u}_\alpha ^{\mathcal {I} \varvec{k}}(\bar{g})]_{j_2 j_1} [\bar{u}_\alpha ^{\varvec{k}}(\mathcal {I})]_{j_1 j} \\&= \sum _{j_1, j_2, j_3} c_{\alpha j_3}^\dagger (\mathcal {I} \bar{g} \mathcal {I} \varvec{k}) [\bar{u}_\alpha ^{\bar{g} \mathcal {I} \varvec{k}}(\mathcal {I})]_{j_3 j_2} [\bar{u}_\alpha ^{\mathcal {I} \varvec{k}}(\bar{g})]_{j_2 j_1} [\bar{u}_\alpha ^{\varvec{k}}(\mathcal {I})]_{j_1 j} \\&= \omega ^{\mathcal {I} \bar{g} \mathcal {I} \varvec{k}}(\mathcal {I}, \bar{g}) \omega ^{\mathcal {I} \bar{g} \mathcal {I} \varvec{k}}(\mathcal {I} \bar{g}, \mathcal {I}) \sum _{j_3} c_{\alpha j_3}^\dagger (\mathcal {I} \bar{g} \mathcal {I} \varvec{k}) [\bar{u}_\alpha ^{\varvec{k}}(\overline{\mathcal {I} g \mathcal {I}})]_{j_3 j} \\&= \frac{\omega ^{\varvec{k}}(\mathcal {I}, \bar{g})}{\omega ^{\varvec{k}}(\bar{g}, \mathcal {I})} \sum _{j'} c_{\alpha j'}^\dagger (\varvec{k}) [\bar{\lambda }_\alpha ^{\varvec{k}}(\bar{g})]_{j' j}, \end{aligned}$$
where we use \(\mathcal {I} \bar{g} \mathcal {I} \in \mathcal {G}^{\varvec{k}}\) and \(\overline{\mathcal {I} g \mathcal {I}} = \bar{g}\) in the last equal.
 
5
Taking into account the factor system in Eqs. (2.32) and (2.40), we can easily derive it by the following commutation relation:
$$\begin{aligned}{}[u(\Gamma ), u(\mathcal {M}_z)]&= \omega _{\text {in}}(\mathfrak {T}, \mathfrak {C})^{- 1} \{ u(\mathfrak {T}) u(\mathfrak {C})^* u(\mathcal {M}_z) - u(\mathcal {M}_z) u(\mathfrak {T}) u(\mathfrak {C})^* \} \\&= \omega _{\text {in}}(\mathfrak {T}, \mathfrak {C})^{- 1} \{ u(\mathfrak {T}) u(\mathfrak {C})^* u(\mathcal {M}_z) - u(\mathfrak {T}) u(\mathcal {M}_z)^* u(\mathfrak {C})^* \} \\&= \omega _{\text {in}}(\mathfrak {T}, \mathfrak {C})^{- 1} \{ u(\mathfrak {T}) u(\mathfrak {C})^* u(\mathcal {M}_z) - u(\mathfrak {T}) u(\mathfrak {C})^* u(\mathcal {M}_z) \} = 0, \end{aligned}$$
where we use \(\Gamma = \mathcal {T C} = \mathfrak {T C}\).
 
Literature
1.
go back to reference Yarzhemsky VG, Murav’ev EN (1992) J Phys: Condens Matter 4(13):3525ADS Yarzhemsky VG, Murav’ev EN (1992) J Phys: Condens Matter 4(13):3525ADS
5.
go back to reference Yarzhemsky VG (2008) J Opt Adv Mater 10(7):1759 Yarzhemsky VG (2008) J Opt Adv Mater 10(7):1759
17.
go back to reference Bradley CJ, Cracknell AP (1972) The Mathematical theory of symmetry in solids. Oxford University Press, OxfordMATH Bradley CJ, Cracknell AP (1972) The Mathematical theory of symmetry in solids. Oxford University Press, OxfordMATH
18.
go back to reference Wigner EP (1959) Group theory and its application to the quantum mechanics of atomic spectra. Academic, New YorkMATH Wigner EP (1959) Group theory and its application to the quantum mechanics of atomic spectra. Academic, New YorkMATH
20.
go back to reference Inui T, Tanabe Y, Onodera Y (1990) Group theory and its applications in physics, Springer Series in Solid-State Sciences, vol 78. Springer, BerlinMATH Inui T, Tanabe Y, Onodera Y (1990) Group theory and its applications in physics, Springer Series in Solid-State Sciences, vol 78. Springer, BerlinMATH
21.
go back to reference Shiozaki K, Sato M, Gomi K, Atiyah-hirzebruch spectral sequence in band topology: general formalism and topological invariants for 230 space groups, arXiv:1802.06694 Shiozaki K, Sato M, Gomi K, Atiyah-hirzebruch spectral sequence in band topology: general formalism and topological invariants for 230 space groups, arXiv:​1802.​06694
29.
31.
go back to reference Bzdušek Tcv , Sigrist M (2017) Phys Rev B 96:155105 Bzdušek Tcv , Sigrist M (2017) Phys Rev B 96:155105
35.
go back to reference Ghosh P, Sau JD, Tewari S (2010) Das Sarma S 82:184525 Ghosh P, Sau JD, Tewari S (2010) Das Sarma S 82:184525
Metadata
Title
Method
Author
Dr. Shuntaro Sumita
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4264-4_2

Premium Partners