Skip to main content
Top
Published in: Neural Computing and Applications 3/2018

22-07-2016 | Original Article

MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions

Authors: Syed Tauseef Mohyud-Din, Saeed Ullah Jan, Umar Khan, Naveed Ahmed

Published in: Neural Computing and Applications | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The flow of a radiative and electrically conducting micropolar nanofluid inside a porous channel is investigated. After implementing the similarity transformations, the partial differential equations representing the radiative flow are reduced to a system of ordinary differential equations. The subsequent equations are solved by making use of a well-known analytical method called homotopy analysis method (HAM). The expressions concerning the velocity, microrotation, temperature, and nanoparticle concentration profiles are obtained. The radiation tends to drop the temperature profile for the fluid. The formulation for local Nusselt and Sherwood numbers is also presented. Tabular and graphical results highlighting the effects of different physical parameters are presented. Rate of heat transfer at the lower wall is seen to be increasing with higher values of the radiation parameter while a drop in heat transfer rate at the upper wall is observed. Same problem has been solved by implementing the numerical procedure called the Runge–Kutta method. A comparison between the HAM, numerical and already existing results has also been made.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hartman J (1937) Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Mathematisk-fysiske Meddelelser XV:6 Hartman J (1937) Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Mathematisk-fysiske Meddelelser XV:6
2.
go back to reference Hartman J, Lazarus F, Selskab DV (1937) Experimental investigations on the flow of mercury in a homogeneous magnetic field. Mathematisk-fysiske Meddelelser XV:7 Hartman J, Lazarus F, Selskab DV (1937) Experimental investigations on the flow of mercury in a homogeneous magnetic field. Mathematisk-fysiske Meddelelser XV:7
3.
go back to reference Moreau R (1990) Magneto hydrodynamics. Kluwer, Dordrecht Moreau R (1990) Magneto hydrodynamics. Kluwer, Dordrecht
4.
go back to reference Makinde OD, Mhone PY (2006) Hermite–Pade approximation approach to MHD Jeffery–Hamel flows. Appl Math Comput 181:966–972MATH Makinde OD, Mhone PY (2006) Hermite–Pade approximation approach to MHD Jeffery–Hamel flows. Appl Math Comput 181:966–972MATH
5.
go back to reference Ellahi R, Riaz A (2010) Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math Comput Model 52:1783–1793MathSciNetCrossRefMATH Ellahi R, Riaz A (2010) Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math Comput Model 52:1783–1793MathSciNetCrossRefMATH
6.
go back to reference Khan U, Ahmed N, Zaidi ZA, Asadullah M, Mohyud-Din ST (2014) MHD squeezing flow between two infinite plates. Ain Shams Eng J 5:187–192CrossRef Khan U, Ahmed N, Zaidi ZA, Asadullah M, Mohyud-Din ST (2014) MHD squeezing flow between two infinite plates. Ain Shams Eng J 5:187–192CrossRef
7.
go back to reference Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808CrossRef Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808CrossRef
8.
go back to reference Ellahi R, Hassan M, Zeeshan A (2015) Study on magnetohydrodynamic nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution. IEEE Trans Nanotechnol 14(4):726–734CrossRef Ellahi R, Hassan M, Zeeshan A (2015) Study on magnetohydrodynamic nanofluid by means of single and multi-walled carbon nanotubes suspended in a salt water solution. IEEE Trans Nanotechnol 14(4):726–734CrossRef
10.
12.
go back to reference Ariman T, Turk M, Sylvester N (1973) Microcontinuum fluid mechanics—a review. Int J Eng Sci 11(8):905–930CrossRefMATH Ariman T, Turk M, Sylvester N (1973) Microcontinuum fluid mechanics—a review. Int J Eng Sci 11(8):905–930CrossRefMATH
13.
go back to reference Ashraf M, Kamal MA, Syed KS (2009) Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel. Comput Fluids 38:1895–1902CrossRefMATH Ashraf M, Kamal MA, Syed KS (2009) Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel. Comput Fluids 38:1895–1902CrossRefMATH
14.
go back to reference Takhar HS, Bhargava R, Agrawal RS, Balaji AVS (2000) Finite element solution of micropolar fluid flow and heat transfer between two porous discs. Int J Eng Sci 38:1907–1922CrossRefMATH Takhar HS, Bhargava R, Agrawal RS, Balaji AVS (2000) Finite element solution of micropolar fluid flow and heat transfer between two porous discs. Int J Eng Sci 38:1907–1922CrossRefMATH
15.
go back to reference Kelson NA, Farrell TW (2001) Micropolar fluid flow over a porous stretching sheet with strong suction or injection. Int Commun Heat Mass Transfer 28:479–488CrossRef Kelson NA, Farrell TW (2001) Micropolar fluid flow over a porous stretching sheet with strong suction or injection. Int Commun Heat Mass Transfer 28:479–488CrossRef
16.
go back to reference Srinivasacharya D, Ramana Murthy JV, Venugopalam D (2001) Unsteady stokes flow of micropolar fluid between two parallel porous plates. Int J Eng Sci 39:1557–1563CrossRefMATH Srinivasacharya D, Ramana Murthy JV, Venugopalam D (2001) Unsteady stokes flow of micropolar fluid between two parallel porous plates. Int J Eng Sci 39:1557–1563CrossRefMATH
17.
go back to reference Ziabakhsh Z, Domairry G (2008) Homotopy analysis solution of micro-polar flow in a porous channel with high mass transfer. Adv Theory Appl Mech 1(2):79–94MATH Ziabakhsh Z, Domairry G (2008) Homotopy analysis solution of micro-polar flow in a porous channel with high mass transfer. Adv Theory Appl Mech 1(2):79–94MATH
18.
go back to reference Joneidi AA, Ganji DD, Babaelahi M (2009) Micropolar flow in a porous channel with high mass transfer. Int Commun Heat Mass Transfer 36(10):1082–1088CrossRef Joneidi AA, Ganji DD, Babaelahi M (2009) Micropolar flow in a porous channel with high mass transfer. Int Commun Heat Mass Transfer 36(10):1082–1088CrossRef
19.
go back to reference Rashidi MM, Mohimanian Pour SA, Laraqi N (2010) A semi-analytical solution of micropolar flow in a porous channel with mass injection by using differential transform method. Nonlinear Anal Model 15(3):341–350MATH Rashidi MM, Mohimanian Pour SA, Laraqi N (2010) A semi-analytical solution of micropolar flow in a porous channel with mass injection by using differential transform method. Nonlinear Anal Model 15(3):341–350MATH
20.
go back to reference Si XH, Zheng LC, Zhang XX, Chao Y (2011) The flow of micropolar flow through a porous channel with expanding or contracting walls. Cent Eur J Phys 9(2):825–834 Si XH, Zheng LC, Zhang XX, Chao Y (2011) The flow of micropolar flow through a porous channel with expanding or contracting walls. Cent Eur J Phys 9(2):825–834
21.
go back to reference Sheikholeslami M, Ashorynejad HR, Ganji DD, Rashidi MM (2014) Heat and mass transfer of a micropolar fluid in a porous channel. Commun Numer Anal 2014:1–20MathSciNetCrossRef Sheikholeslami M, Ashorynejad HR, Ganji DD, Rashidi MM (2014) Heat and mass transfer of a micropolar fluid in a porous channel. Commun Numer Anal 2014:1–20MathSciNetCrossRef
22.
go back to reference Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Singer DA, Wang HP (eds) Developments and applications of non-Newtonian flows. American Society of Mechanical Engineers, New York, p 231 (99–105) Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Singer DA, Wang HP (eds) Developments and applications of non-Newtonian flows. American Society of Mechanical Engineers, New York, p 231 (99–105)
23.
go back to reference Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef
24.
go back to reference Buongiorno J (2005) Convective transport in nanofluids. J Heat Transfer 128(3):240–250CrossRef Buongiorno J (2005) Convective transport in nanofluids. J Heat Transfer 128(3):240–250CrossRef
25.
go back to reference Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483CrossRefMATH Khan W, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483CrossRefMATH
26.
go back to reference Ellahi R, Raza M, Vafai K (2012) Series solutions of non-Newtonian nanofluid with Reynolds’ model and Vogel’s model by means of the homotopy analysis method. Math Comput Model 55:1876–1891MathSciNetCrossRefMATH Ellahi R, Raza M, Vafai K (2012) Series solutions of non-Newtonian nanofluid with Reynolds’ model and Vogel’s model by means of the homotopy analysis method. Math Comput Model 55:1876–1891MathSciNetCrossRefMATH
27.
go back to reference Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879CrossRef Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879CrossRef
28.
go back to reference Sheikholeslami M, Ganji DD, Ashorynejad HR (2013) Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol 239:259–265CrossRef Sheikholeslami M, Ganji DD, Ashorynejad HR (2013) Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol 239:259–265CrossRef
29.
go back to reference Khan U, Ahmed N, Mohyud-Din ST (2015) Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Comput Appl. doi:10.1007/s00521-015-2035-4 Khan U, Ahmed N, Mohyud-Din ST (2015) Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Comput Appl. doi:10.​1007/​s00521-015-2035-4
30.
go back to reference Mohyud-Din ST, Khan U, Ahmed N, Hassan SM (2015) Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl Sci 5:1639–1664CrossRef Mohyud-Din ST, Khan U, Ahmed N, Hassan SM (2015) Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl Sci 5:1639–1664CrossRef
31.
go back to reference Mohyud-Din ST, Zaidi ZA, Khan U, Ahmed N (2015) On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol 46:514–522CrossRef Mohyud-Din ST, Zaidi ZA, Khan U, Ahmed N (2015) On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol 46:514–522CrossRef
32.
go back to reference Mohyud-Din ST, Khan U, Ahmed N, Bin-Mohsin B (2016) Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput Appl (accepted) Mohyud-Din ST, Khan U, Ahmed N, Bin-Mohsin B (2016) Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput Appl (accepted)
33.
go back to reference Rashidi MM, Vishnu Ganesh N, Abdul Hakeem AK, Ganga B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq 198:234–238CrossRef Rashidi MM, Vishnu Ganesh N, Abdul Hakeem AK, Ganga B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq 198:234–238CrossRef
34.
go back to reference Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E 65:17–23CrossRef Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E 65:17–23CrossRef
35.
go back to reference Khan U, Ahmed N, Mohyud-Din ST, Mohsin BB (2016) Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural Comput Appl. doi:10.1007/s00521-016-2187-x Khan U, Ahmed N, Mohyud-Din ST, Mohsin BB (2016) Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural Comput Appl. doi:10.​1007/​s00521-016-2187-x
36.
go back to reference Abdulaziz O, Noor NFM, Hashim I (2009) Homotopy analysis method for fully developed MHD micropolar fluid flow between vertical porous plates. Int J Numer Meth Eng 78(7):817–827MathSciNetCrossRefMATH Abdulaziz O, Noor NFM, Hashim I (2009) Homotopy analysis method for fully developed MHD micropolar fluid flow between vertical porous plates. Int J Numer Meth Eng 78(7):817–827MathSciNetCrossRefMATH
37.
go back to reference Noor NFM, Ul Haq R, Nadeem S, Hashim I (2015) Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8):2007–2022MathSciNetCrossRef Noor NFM, Ul Haq R, Nadeem S, Hashim I (2015) Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8):2007–2022MathSciNetCrossRef
38.
go back to reference Noor NFM, Ul Haq R, Abbasbandy S, Hashim I (2016) Heat flux performance in a porous medium embedded Maxwell fluid flow over a vertically stretched plate due to heat absorption. J Nonlinear Sci Appl 9(5):2986–3001MathSciNetCrossRefMATH Noor NFM, Ul Haq R, Abbasbandy S, Hashim I (2016) Heat flux performance in a porous medium embedded Maxwell fluid flow over a vertically stretched plate due to heat absorption. J Nonlinear Sci Appl 9(5):2986–3001MathSciNetCrossRefMATH
39.
go back to reference Liao S (ed) (2013) Advances in the homotopy analysis method, Chapter 7. World Scientific Press, London Liao S (ed) (2013) Advances in the homotopy analysis method, Chapter 7. World Scientific Press, London
40.
go back to reference Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513MathSciNetMATH Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513MathSciNetMATH
Metadata
Title
MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions
Authors
Syed Tauseef Mohyud-Din
Saeed Ullah Jan
Umar Khan
Naveed Ahmed
Publication date
22-07-2016
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 3/2018
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2493-3

Other articles of this Issue 3/2018

Neural Computing and Applications 3/2018 Go to the issue

Premium Partner