Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2020

06-05-2020

Micro-debond Experiment and Analytical Model for Interfacial Fracture Toughness between Single Carbon Fiber and TiO2 Micro-droplet

Authors: Rongtao Zhu, Xiang Wang, Chaoyong Li, Xian Wang, Pengfei Huang, Shu Ma

Published in: Journal of Materials Engineering and Performance | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To improve mechanical behaviors of the carbon fiber-reinforced metal matrix composites, TiO2-coated carbon fibers are usually used in the composites to protect the fiber from degradation. Thus, it is crucial to maintain both strong interfacial bonding at carbon fiber–TiO2 interlayer interface and high interfacial fracture toughness, which influence the damage tolerance of the composites as well as their energy absorption capacity. In this study, different single carbon fiber/TiO2 systems with and without modified carbon fiber were prepared at heat treatment temperatures of 80 and 700 °C, respectively, and an analytical modeling for evaluating interfacial fracture toughness from the micro-debond tests by using the tests that record only the debond and friction force as a function of the TiO2 micro-droplet length was implemented first, and then, the interfacial adhesion forces, interfacial fracture toughness and the influence of friction force and thermal residual stress on the fracture toughness of the systems were discussed in detail. From the experimental and theoretical results, heat treatment temperature and local strong bonding sites have a significant effect on the interfacial fracture toughness, while the interfacial morphology and functional groups are dominant in determining the interfacial adhesion forces. Meanwhile, the dominant factor of the interfacial fracture toughness will change as the heat treatment temperature increases. The friction force is a major contributor to the interfacial fracture toughness of the systems treated under lower temperature (80 °C), while the residual thermal stress is responsible for the toughness of the systems treated under higher temperature (700 °C). The results in this study can serve as reliable input data in multi-scale simulation of the carbon fiber-reinforced light metal matrix composites and offer exciting opportunities for further investigation of the microscopic deformation mechanisms in the composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Dorner-Reisel, Y. Nishida, V. Klemm, K. Nestler, G. Marx, and E. Müller, Investigation of Interfacial Interaction Between Uncoated and Coated Carbon Fibres and the Magnesium Alloy AZ91, Anal. Bioanal. Chem., 2002, 374(4), p 635–638CrossRef A. Dorner-Reisel, Y. Nishida, V. Klemm, K. Nestler, G. Marx, and E. Müller, Investigation of Interfacial Interaction Between Uncoated and Coated Carbon Fibres and the Magnesium Alloy AZ91, Anal. Bioanal. Chem., 2002, 374(4), p 635–638CrossRef
2.
go back to reference B.L. Mordike and T. Ebert, Magnesium: Properties—Application—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45CrossRef B.L. Mordike and T. Ebert, Magnesium: Properties—Application—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45CrossRef
3.
go back to reference J. Shen, G. You, S. Long, and F. Pan, Abnormal Macropore Formation During Double-Sided Gas Tungsten Arc Welding of Magnesium AZ91D Alloy, Mater. Charact., 2008, 59(8), p 1059–1065CrossRef J. Shen, G. You, S. Long, and F. Pan, Abnormal Macropore Formation During Double-Sided Gas Tungsten Arc Welding of Magnesium AZ91D Alloy, Mater. Charact., 2008, 59(8), p 1059–1065CrossRef
4.
go back to reference M. Lancin and C. Marhic, TEM Study of Carbon Fibre Reinforced Aluminium Matrix Composites: Influence of Brittle Phases and Interface on Mechanical Properties, J. Eur. Ceram. Soc., 2000, 20(10), p p1493–p1503CrossRef M. Lancin and C. Marhic, TEM Study of Carbon Fibre Reinforced Aluminium Matrix Composites: Influence of Brittle Phases and Interface on Mechanical Properties, J. Eur. Ceram. Soc., 2000, 20(10), p p1493–p1503CrossRef
5.
go back to reference A. Veillère, A. Sundaramurthy, J.M. Heintz, J. Douin, M. Lahaye, N. Chandra, S. Enders, and J.F. Silvain, Relationship Between Interphase Chemistry and Mechanical Properties at the Scale of Micron in Cu–Cr/CF Composite, Acta Mater., 2011, 59(4), p 1445–1455CrossRef A. Veillère, A. Sundaramurthy, J.M. Heintz, J. Douin, M. Lahaye, N. Chandra, S. Enders, and J.F. Silvain, Relationship Between Interphase Chemistry and Mechanical Properties at the Scale of Micron in Cu–Cr/CF Composite, Acta Mater., 2011, 59(4), p 1445–1455CrossRef
6.
go back to reference K. Landry, S. Kalogeropoulou, and N. Eustathopoulos, Wettability of Carbon by Aluminum and Aluminum Alloys, Mater. Sci. Eng. A, 1998, 254(1–2), p 99–111CrossRef K. Landry, S. Kalogeropoulou, and N. Eustathopoulos, Wettability of Carbon by Aluminum and Aluminum Alloys, Mater. Sci. Eng. A, 1998, 254(1–2), p 99–111CrossRef
7.
go back to reference Shaofeng Zhang, Guoqin Chen, Risheng Pei, Murid Hussain, Yaping Wang, Daguang Li, Pingping Wang, and Wu Gaohui, Effect of Y Content on Interfacial Microstructures and Mechanical Properties of Cf/Mg Composite, Mater. Sci. Eng. A, 2014, 613, p 111–116CrossRef Shaofeng Zhang, Guoqin Chen, Risheng Pei, Murid Hussain, Yaping Wang, Daguang Li, Pingping Wang, and Wu Gaohui, Effect of Y Content on Interfacial Microstructures and Mechanical Properties of Cf/Mg Composite, Mater. Sci. Eng. A, 2014, 613, p 111–116CrossRef
8.
go back to reference Shaofeng Zhang, Guoqin Chen, Risheng Pei, Murid Hussain, Yaping Wang, Daguang Li, Pingping Wang, and Wu Gaohui, Effect of Gd Content on Interfacial Microstructures and Mechanical Properties of Cf/Mg Composite, Mater. Des., 2015, 65, p 567–574CrossRef Shaofeng Zhang, Guoqin Chen, Risheng Pei, Murid Hussain, Yaping Wang, Daguang Li, Pingping Wang, and Wu Gaohui, Effect of Gd Content on Interfacial Microstructures and Mechanical Properties of Cf/Mg Composite, Mater. Des., 2015, 65, p 567–574CrossRef
9.
go back to reference J. Bouix, M.P. Berthet, F. Bosselet, R. Favre, M. Peronnet, O. Rapaud, J.C. Viala, C. Vincent, and H. Vincent, Physico-Chemistry of Interfaces in Inorganic-Matrix Composites, Compos. Sci. Technol., 2001, 61(3), p 355–362CrossRef J. Bouix, M.P. Berthet, F. Bosselet, R. Favre, M. Peronnet, O. Rapaud, J.C. Viala, C. Vincent, and H. Vincent, Physico-Chemistry of Interfaces in Inorganic-Matrix Composites, Compos. Sci. Technol., 2001, 61(3), p 355–362CrossRef
10.
go back to reference Z.L. Pei, K. Li, J. Gong, N.L. Shi, E. Elangovan, and C. Sun, Micro-structural and Tensile Strength Analyses on the Magnesium Matrix Composites Reinforced with Coated Carbon Fiber, J. Mater. Sci., 2009, 44(15), p 4124–4131CrossRef Z.L. Pei, K. Li, J. Gong, N.L. Shi, E. Elangovan, and C. Sun, Micro-structural and Tensile Strength Analyses on the Magnesium Matrix Composites Reinforced with Coated Carbon Fiber, J. Mater. Sci., 2009, 44(15), p 4124–4131CrossRef
11.
go back to reference H.A. Katzman, Fibre Coatings for the Fabrication of Graphite-Reinforced Magnesium Composites, J. Mater. Sci., 1987, 22(1), p 144–148CrossRef H.A. Katzman, Fibre Coatings for the Fabrication of Graphite-Reinforced Magnesium Composites, J. Mater. Sci., 1987, 22(1), p 144–148CrossRef
12.
go back to reference R. Chen and X. Li, A Study of Silica Coatings on the Surface of Carbon or Graphite Fiber and the Interface in a Carbon/Magnesium Composite, Compos. Sci. Technol., 1993, 49(4), p 357–362CrossRef R. Chen and X. Li, A Study of Silica Coatings on the Surface of Carbon or Graphite Fiber and the Interface in a Carbon/Magnesium Composite, Compos. Sci. Technol., 1993, 49(4), p 357–362CrossRef
13.
go back to reference F. Wu, J. Zhu, Y. Chen, and G. Zhang, The Effects of Processing on the Microstructures and Properties of Gr/Mg Composites, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2000, 277(1–2), p 143–147CrossRef F. Wu, J. Zhu, Y. Chen, and G. Zhang, The Effects of Processing on the Microstructures and Properties of Gr/Mg Composites, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2000, 277(1–2), p 143–147CrossRef
14.
go back to reference A. Feldhoff, E. Pippel, and J. Woltersdorf, Interface Engineering of Carbon-Fiber Reinforced Mg–Al Alloys, Adv. Eng. Mater., 2000, 2(8), p 471–480CrossRef A. Feldhoff, E. Pippel, and J. Woltersdorf, Interface Engineering of Carbon-Fiber Reinforced Mg–Al Alloys, Adv. Eng. Mater., 2000, 2(8), p 471–480CrossRef
15.
go back to reference F. Reischer, E. Pippel, J. Woltersdorf, S. Stöckel, and G. Marx, Carbon Fibre-Reinforced Magnesium: Improvement of Bending Strength by Nanodesign of Boron Nitride Interlayers, Mater. Chem. Phys., 2007, 104(1), p 83–87CrossRef F. Reischer, E. Pippel, J. Woltersdorf, S. Stöckel, and G. Marx, Carbon Fibre-Reinforced Magnesium: Improvement of Bending Strength by Nanodesign of Boron Nitride Interlayers, Mater. Chem. Phys., 2007, 104(1), p 83–87CrossRef
16.
go back to reference I. Zhitomirsky, Electrophoretic and Electrolytic Deposition of Ceramic Coatings on Carbon Fibers, J. Eur. Ceram. Soc., 1998, 18(7), p 849–856CrossRef I. Zhitomirsky, Electrophoretic and Electrolytic Deposition of Ceramic Coatings on Carbon Fibers, J. Eur. Ceram. Soc., 1998, 18(7), p 849–856CrossRef
17.
go back to reference J. Li, C. Xia, Y. Zhang, M. Wang, and H. Wang, Effects of TiO2 Coating on Microstructure and Mechanical Properties of Magnesium Matrix Composite Reinforced with Mg2B2O5w, Mater. Des., 2012, 39, p 334–337CrossRef J. Li, C. Xia, Y. Zhang, M. Wang, and H. Wang, Effects of TiO2 Coating on Microstructure and Mechanical Properties of Magnesium Matrix Composite Reinforced with Mg2B2O5w, Mater. Des., 2012, 39, p 334–337CrossRef
18.
go back to reference C.J. Xia, M.L. Wang, H.W. Wang, and C. Zhou, The Effect of Aluminum Content on TiO2 Coated Carbon Fiber Reinforced Magnesium Alloy Composites, Appl. Mech. Mater., 2014, 488–489, p 30–35 C.J. Xia, M.L. Wang, H.W. Wang, and C. Zhou, The Effect of Aluminum Content on TiO2 Coated Carbon Fiber Reinforced Magnesium Alloy Composites, Appl. Mech. Mater., 2014, 488–489, p 30–35
19.
go back to reference C. Wang, X. Ji, A. Roy, V.V. Silberschmidt, and Z. Chen, Shear Strength and Fracture Toughness of Carbon Fibre/Epoxy Interface: Effect of Surface Treatment, Mater. Des., 2015, 85, p 800–807CrossRef C. Wang, X. Ji, A. Roy, V.V. Silberschmidt, and Z. Chen, Shear Strength and Fracture Toughness of Carbon Fibre/Epoxy Interface: Effect of Surface Treatment, Mater. Des., 2015, 85, p 800–807CrossRef
20.
go back to reference K. Shirvanimoghaddam, S.U. Hamim, M.K. Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J. Paulo Davim, and M. Naebe, Carbon Fiber Reinforced Metal Matrix Composites: Fabrication Processes and Properties, Compos. Part A Appl. Sci. Manuf., 2017, 92, p 70–96CrossRef K. Shirvanimoghaddam, S.U. Hamim, M.K. Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J. Paulo Davim, and M. Naebe, Carbon Fiber Reinforced Metal Matrix Composites: Fabrication Processes and Properties, Compos. Part A Appl. Sci. Manuf., 2017, 92, p 70–96CrossRef
21.
go back to reference D. Li, Effect of Thermal Cycling on the Mechanical Properties of Cf/Al Composites, Mater. Sci. Eng. A, 2013, 586, p 330–337CrossRef D. Li, Effect of Thermal Cycling on the Mechanical Properties of Cf/Al Composites, Mater. Sci. Eng. A, 2013, 586, p 330–337CrossRef
22.
go back to reference X. Ji, C. Wang, B.A.P. Francis, E.S.M. Chia, L. Zheng, J. Yang, S.C. Joshi, and Z. Chen, Mechanical and Interfacial Properties Characterisation of Single Carbon Fibres for Composite Applications, Exp. Mech., 2015, 55(6), p 1057–1065CrossRef X. Ji, C. Wang, B.A.P. Francis, E.S.M. Chia, L. Zheng, J. Yang, S.C. Joshi, and Z. Chen, Mechanical and Interfacial Properties Characterisation of Single Carbon Fibres for Composite Applications, Exp. Mech., 2015, 55(6), p 1057–1065CrossRef
23.
go back to reference R.J. Scheer and J.A. Nairn, A Comparison of Several Fracture Mechanics Methods for Measuring Interfacial Toughness with Microbond Tests, J. Adhes., 1995, 53(1–2), p 45–68CrossRef R.J. Scheer and J.A. Nairn, A Comparison of Several Fracture Mechanics Methods for Measuring Interfacial Toughness with Microbond Tests, J. Adhes., 1995, 53(1–2), p 45–68CrossRef
24.
go back to reference J.A. Nairn, Analytical Fracture Mechanics Analysis of the Pull-Out Test Including the Effects of Friction and Thermal Stresses, Adv. Compos. Lett., 2000, 9(6), p 373–383CrossRef J.A. Nairn, Analytical Fracture Mechanics Analysis of the Pull-Out Test Including the Effects of Friction and Thermal Stresses, Adv. Compos. Lett., 2000, 9(6), p 373–383CrossRef
Metadata
Title
Micro-debond Experiment and Analytical Model for Interfacial Fracture Toughness between Single Carbon Fiber and TiO2 Micro-droplet
Authors
Rongtao Zhu
Xiang Wang
Chaoyong Li
Xian Wang
Pengfei Huang
Shu Ma
Publication date
06-05-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04827-5

Other articles of this Issue 5/2020

Journal of Materials Engineering and Performance 5/2020 Go to the issue

Premium Partners