Skip to main content
Top
Published in: Cellulose 7/2017

27-04-2017 | Original Paper

Micro–nano structural engineering of filter paper surface for high selective oil–water separation

Authors: Fang Zhang, Hao Ren, Lingling Shen, Guolin Tong, Yulin Deng

Published in: Cellulose | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose-based lotus-leaf-like filter paper for selective separation of oil/water was prepared. Experimentally, cellulose nanofibril aerogel microspheres prepared by ultrasonic atomization method were coated on commercial filter papers to form unique “micro–nano” structured surface. By controlling both the morphology and chemistry of the surface, the papers could be either under-water superoleophobic or under-oil superhydrophobic. It was found that the filter papers could be engineered to effectively filter only oil or only water from their mixtures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Cai H, Mu W, Liu W, Zhang X, Deng Y (2015) Sol–gel synthesis highly porous titanium dioxide microspheres with cellulose nanofibrils-based aerogel templates. Inorg Chem Commun 51:71–74CrossRef Cai H, Mu W, Liu W, Zhang X, Deng Y (2015) Sol–gel synthesis highly porous titanium dioxide microspheres with cellulose nanofibrils-based aerogel templates. Inorg Chem Commun 51:71–74CrossRef
go back to reference Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRef
go back to reference Cortese B, Caschera D, Federici F, Ingo G, Gigli G (2014) Superhydrophobic fabrics for oil–water separation through a diamond like carbon (DLC) coating. J Mater Chem 2:6781–6789CrossRef Cortese B, Caschera D, Federici F, Ingo G, Gigli G (2014) Superhydrophobic fabrics for oil–water separation through a diamond like carbon (DLC) coating. J Mater Chem 2:6781–6789CrossRef
go back to reference Feng J, Nguyen S, Fan Z, Hai M (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175CrossRef Feng J, Nguyen S, Fan Z, Hai M (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175CrossRef
go back to reference Hu Z, Gong J, Zeng X, Deng Y (2009) Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating. Colloids Surf A 351:65–70CrossRef Hu Z, Gong J, Zeng X, Deng Y (2009) Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating. Colloids Surf A 351:65–70CrossRef
go back to reference Jin C, Yan R, Huang J (2011a) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21:17519–17525CrossRef Jin C, Yan R, Huang J (2011a) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21:17519–17525CrossRef
go back to reference Jin H, Kettunen M, Laiho A, Pynnönen H, Paltakari J, Marmur A, Ikkala O, Ras RH (2011b) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27:1930–1934CrossRef Jin H, Kettunen M, Laiho A, Pynnönen H, Paltakari J, Marmur A, Ikkala O, Ras RH (2011b) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27:1930–1934CrossRef
go back to reference Jin C, Jiang Y, Niu T, Huang J (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22:12562–12567CrossRef Jin C, Jiang Y, Niu T, Huang J (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22:12562–12567CrossRef
go back to reference Li S, Wei Y, Huang J (2010) Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach. Chem Lett 39:20–21CrossRef Li S, Wei Y, Huang J (2010) Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach. Chem Lett 39:20–21CrossRef
go back to reference Li J, Kang R, Tang X, She H, Yang Y, Zha F (2016a) Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale 8:8525–8529CrossRef Li J, Kang R, Tang X, She H, Yang Y, Zha F (2016a) Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale 8:8525–8529CrossRef
go back to reference Li J, Li D, Yang Y, Lei Z (2016b) A prewetted induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue coated mesh for selectively efficient oil/water separation. Green Chem 18:541–549CrossRef Li J, Li D, Yang Y, Lei Z (2016b) A prewetted induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue coated mesh for selectively efficient oil/water separation. Green Chem 18:541–549CrossRef
go back to reference Li J, Guan P, Zhang Y et al (2017) A diatomite coated mesh with switchable wettability for on-demand oil/water separation and organic pollutants adsorption. Sep Purif Technol 174:275–281CrossRef Li J, Guan P, Zhang Y et al (2017) A diatomite coated mesh with switchable wettability for on-demand oil/water separation and organic pollutants adsorption. Sep Purif Technol 174:275–281CrossRef
go back to reference Obeso CG, Sousa MP, Song W, Rodriguez-Pérez MA, Bhushan B, Mano JF (2013) Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates. Colloids Surf A 416:51–55CrossRef Obeso CG, Sousa MP, Song W, Rodriguez-Pérez MA, Bhushan B, Mano JF (2013) Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates. Colloids Surf A 416:51–55CrossRef
go back to reference Ogihara H, Xie J, Saji T (2013) Factors determining wettability of superhydrophobic paper prepared by spraying nanoparticle suspensions. Colloids Surf A 434:35–41CrossRef Ogihara H, Xie J, Saji T (2013) Factors determining wettability of superhydrophobic paper prepared by spraying nanoparticle suspensions. Colloids Surf A 434:35–41CrossRef
go back to reference Ou R, Wei J, Jiang L, Simon GP, Wang H (2015) Robust thermo-responsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil–water separation. Environ Sci Technol 50:906–914CrossRef Ou R, Wei J, Jiang L, Simon GP, Wang H (2015) Robust thermo-responsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil–water separation. Environ Sci Technol 50:906–914CrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef
go back to reference Silva TCF, Habibi Y, Colodette JL, Elder T, Lucia LAA (2012) fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels. Cellulose 19:1945–1956CrossRef Silva TCF, Habibi Y, Colodette JL, Elder T, Lucia LAA (2012) fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels. Cellulose 19:1945–1956CrossRef
go back to reference Tang X, Si Y, Ge J, Ding B, Liu L, Zheng G, Luo W, Yu J (2013) In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil–water separation. Nanoscale. 5:11657–11664CrossRef Tang X, Si Y, Ge J, Ding B, Liu L, Zheng G, Luo W, Yu J (2013) In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil–water separation. Nanoscale. 5:11657–11664CrossRef
go back to reference Yang H, Deng Y (2008) Preparation and physical properties of superhydrophobic papers. J Colloid Interface Sci 325:588–593CrossRef Yang H, Deng Y (2008) Preparation and physical properties of superhydrophobic papers. J Colloid Interface Sci 325:588–593CrossRef
go back to reference Zhang W, Zhang Y, Lu C, Deng Y (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22:11642–11650CrossRef Zhang W, Zhang Y, Lu C, Deng Y (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22:11642–11650CrossRef
go back to reference Zhang L, Zhong Y, Cha D, Wang PA (2013) Self-cleaning under-water superoleophobic mesh for oil–water separation. Sci Rep 3:670–692 Zhang L, Zhong Y, Cha D, Wang PA (2013) Self-cleaning under-water superoleophobic mesh for oil–water separation. Sci Rep 3:670–692
go back to reference Zhang F, Wu W, Zhang X, Meng X, Tong G, Deng Y (2016a) Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 23:415–425CrossRef Zhang F, Wu W, Zhang X, Meng X, Tong G, Deng Y (2016a) Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose 23:415–425CrossRef
go back to reference Zhang F, Ren H, Tong G, Deng Y (2016b) Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties. Cellulose 23:3665–3676CrossRef Zhang F, Ren H, Tong G, Deng Y (2016b) Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties. Cellulose 23:3665–3676CrossRef
go back to reference Zhang F, Ren H, Dou J, Tong G, Deng Y (2017) Cellulose nanofibril based-aerogel microreactors: a high efficiency and easy recoverable W/O/W membrane separation system. Sci Rep. doi:10.1038/srep40096 Zhang F, Ren H, Dou J, Tong G, Deng Y (2017) Cellulose nanofibril based-aerogel microreactors: a high efficiency and easy recoverable W/O/W membrane separation system. Sci Rep. doi:10.​1038/​srep40096
go back to reference Zhou X, Zhang Z, Xu X, Guo F, Zhu X, Men X, Ge B (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces 5:7208–7214CrossRef Zhou X, Zhang Z, Xu X, Guo F, Zhu X, Men X, Ge B (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces 5:7208–7214CrossRef
Metadata
Title
Micro–nano structural engineering of filter paper surface for high selective oil–water separation
Authors
Fang Zhang
Hao Ren
Lingling Shen
Guolin Tong
Yulin Deng
Publication date
27-04-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 7/2017
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1292-z

Other articles of this Issue 7/2017

Cellulose 7/2017 Go to the issue