Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 11/2019

19-06-2019 | Research Article--Computer Engineering and Computer Science

Microarray Filtering-Based Fuzzy C-Means Clustering and Classification in Genomic Signal Processing

Authors: Purnendu Mishra, Nilamani Bhoi

Published in: Arabian Journal for Science and Engineering | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Genomic signal processing is a development field in medicine and agriculture. Numerous research areas are processing the genomics of living organism such as animals and particularly human beings. In this paper, the microarray data set for the biological organism which includes a large number of gene data has taken for the processing. The microarray data are a powerful technology practised in the research field for validating the gene discovery and diagnosis of diseases. The data are processed to a large number with plenty of genes. The proposed Kalman filter-based fuzzy c-means cluster and artificial neural network (KF-FANN) enhance the genomic signal processing to the optimal level. The Kalman filter proposed in this paper to remove the noise and smoothen the data for signal processing. An ideal clustering process is carried out for the classification of the microarray data. The fuzzy c-means clustering was proposed in this paper for grouping the microarray after removing the noise. The artificial neural network is a biologically inspired model proposed in this work for the classification of microarray data to point out the normal and abnormal genes in the microarray data. The proposed work has compared with existing techniques such as c-means, k-means clustering, and multi-SVM, respectively. The proposed method is carried out in the MATLAB platform, and results are evaluated in terms of Calinski–Harabasz index, separation index, Xie and Beni’s index, partition index, accuracy, precision, recall, and F-score. The analysed result shows that the proposed KF-FANN is an efficient method for the classification of microarray data than existing approaches in genomic signal processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adetiba, E.; Olugbara, O.O.; Taiwo, T.B.: Identification of pathogenic viruses using genomic cepstral coefficients with radial basis function neural network. Adv. Nat. Biol Inspired Comput. 1(1), 281–291 (2016) Adetiba, E.; Olugbara, O.O.; Taiwo, T.B.: Identification of pathogenic viruses using genomic cepstral coefficients with radial basis function neural network. Adv. Nat. Biol Inspired Comput. 1(1), 281–291 (2016)
2.
go back to reference Sedlar, K.; Skutkova, H.; Vitek, M.; Provaznik, I.: Set of rules for genomic signal down sampling. Comput. Biol. Med. 69(1), 308–314 (2016) Sedlar, K.; Skutkova, H.; Vitek, M.; Provaznik, I.: Set of rules for genomic signal down sampling. Comput. Biol. Med. 69(1), 308–314 (2016)
3.
go back to reference Boersema, P.J.; Kahraman, A.; Picotti, P.: Proteomics beyond large-scale protein expression analysis. Curr. Opin. Biotechnol. 34(1), 162–170 (2015) Boersema, P.J.; Kahraman, A.; Picotti, P.: Proteomics beyond large-scale protein expression analysis. Curr. Opin. Biotechnol. 34(1), 162–170 (2015)
4.
go back to reference Matarin, M.; Salih, D.A.; Yasvoina, M.; Cummings, D.M.; Guelfi, S.; Liu, W.; Nahaboo, M.A.; Solim, N.; et al.: A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep. 10(4), 633–644 (2015) Matarin, M.; Salih, D.A.; Yasvoina, M.; Cummings, D.M.; Guelfi, S.; Liu, W.; Nahaboo, M.A.; Solim, N.; et al.: A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep. 10(4), 633–644 (2015)
5.
go back to reference Ozturk, C.; Hancer, E.; Karaboga, D.: Dynamic clustering with improved binary artificial bee colony algorithm. Appl. Soft Comput. 28(1), 69–80 (2015) Ozturk, C.; Hancer, E.; Karaboga, D.: Dynamic clustering with improved binary artificial bee colony algorithm. Appl. Soft Comput. 28(1), 69–80 (2015)
6.
go back to reference Kim, D.H.; Marinov, G.K.; Pepke, S.; Singer, Z.S.; He, P.; Williams, B.; Schroth, G.P.; Elowitz, M.B.; Wold, B.J.: Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 16(1), 88–101 (2015) Kim, D.H.; Marinov, G.K.; Pepke, S.; Singer, Z.S.; He, P.; Williams, B.; Schroth, G.P.; Elowitz, M.B.; Wold, B.J.: Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 16(1), 88–101 (2015)
7.
go back to reference Kashef, S.; Nezamabadi-pour, H.: An advanced ACO algorithm for feature subset selection. Neurocomputing 147(1), 271–279 (2015) Kashef, S.; Nezamabadi-pour, H.: An advanced ACO algorithm for feature subset selection. Neurocomputing 147(1), 271–279 (2015)
8.
go back to reference Fraser, G.; Arcuri, A.; McMinn, P.: A memetic algorithm for whole test suite generation. J. Syst. Softw. 103(1), 311–327 (2015) Fraser, G.; Arcuri, A.; McMinn, P.: A memetic algorithm for whole test suite generation. J. Syst. Softw. 103(1), 311–327 (2015)
9.
go back to reference Liu, M.; Zhang, D.: Pairwise constraint-guided sparse learning for feature selection. IEEE Trans. Cybern. 46(1), 298–310 (2016)MathSciNet Liu, M.; Zhang, D.: Pairwise constraint-guided sparse learning for feature selection. IEEE Trans. Cybern. 46(1), 298–310 (2016)MathSciNet
10.
go back to reference Chen, L.; Wang, S.; Wang, K.; Zhu, J.: Soft subspace clustering of categorical data with probabilistic distance. Pattern Recognit. 51(1), 322–332 (2016) Chen, L.; Wang, S.; Wang, K.; Zhu, J.: Soft subspace clustering of categorical data with probabilistic distance. Pattern Recognit. 51(1), 322–332 (2016)
11.
go back to reference Bouguettaya, A.; Yu, Q.; Liu, X.; Zhou, X.; Song, A.: Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 42(5), 2785–2797 (2015) Bouguettaya, A.; Yu, Q.; Liu, X.; Zhou, X.; Song, A.: Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 42(5), 2785–2797 (2015)
12.
go back to reference Tan, S.C.; Watada, J.; Ibrahim, Z.; Khalid, M.: Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 933–950 (2015)MathSciNet Tan, S.C.; Watada, J.; Ibrahim, Z.; Khalid, M.: Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 933–950 (2015)MathSciNet
13.
go back to reference Ansari, N.A.; Bao, R.; Voichita, C.; Draghici, S.: Detecting phenotype-specific interactions between biological processes from microarray data and annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 9(5), 1399–1409 (2012) Ansari, N.A.; Bao, R.; Voichita, C.; Draghici, S.: Detecting phenotype-specific interactions between biological processes from microarray data and annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 9(5), 1399–1409 (2012)
14.
go back to reference Verbanck, M.; Josse, J.; Husson, F.: Regularised PCA to denoise and visualise data. Stat. Comput. 25(2), 471–486 (2015)MathSciNetMATH Verbanck, M.; Josse, J.; Husson, F.: Regularised PCA to denoise and visualise data. Stat. Comput. 25(2), 471–486 (2015)MathSciNetMATH
15.
go back to reference Torres, P.J.R.; Mercado, E.I.S.; Rifón, L.A.: Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems. J. Intell. Manuf. 1(1), 1–21 (2015) Torres, P.J.R.; Mercado, E.I.S.; Rifón, L.A.: Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems. J. Intell. Manuf. 1(1), 1–21 (2015)
16.
go back to reference Liu, X.; Nie, S.; Huang, D.; Xie, M.: Mitogen-activated protein kinase and Akt pathways are involved in 4-n-nonyphenol induced apoptosis in mouse Sertoli TM4 cells. Environ. Toxicol. Pharmacol. 39(2), 815–824 (2015) Liu, X.; Nie, S.; Huang, D.; Xie, M.: Mitogen-activated protein kinase and Akt pathways are involved in 4-n-nonyphenol induced apoptosis in mouse Sertoli TM4 cells. Environ. Toxicol. Pharmacol. 39(2), 815–824 (2015)
17.
go back to reference Ouchi, R.; Okabe, S.; Migita, T.; Nakano, I.O.; Seimiya, H.: Senescence from glioma stem cell differentiation promotes tumor growth. Biochem. Biophys. Res. Commun. 470(2), 275–281 (2016) Ouchi, R.; Okabe, S.; Migita, T.; Nakano, I.O.; Seimiya, H.: Senescence from glioma stem cell differentiation promotes tumor growth. Biochem. Biophys. Res. Commun. 470(2), 275–281 (2016)
18.
go back to reference Joubert, B.R.; Felix, J.F.; Yousefi, P.; Bakulski, K.M.; Just, A.C.; Breton, C.; Reese, S.E.; et al.: DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am. J. Hum. Genet. 98(4), 680–696 (2016) Joubert, B.R.; Felix, J.F.; Yousefi, P.; Bakulski, K.M.; Just, A.C.; Breton, C.; Reese, S.E.; et al.: DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am. J. Hum. Genet. 98(4), 680–696 (2016)
19.
go back to reference Kotake, Y.; Naemura, M.; Kitagawa, K.; Niida, H.; Tsunoda, T.; Shirasawa, S.; Kitagawa, M.: Oncogenic Ras influences the expression of multiple lncRNAs. Cytotechnology 68(4), 1591–1596 (2016) Kotake, Y.; Naemura, M.; Kitagawa, K.; Niida, H.; Tsunoda, T.; Shirasawa, S.; Kitagawa, M.: Oncogenic Ras influences the expression of multiple lncRNAs. Cytotechnology 68(4), 1591–1596 (2016)
20.
go back to reference Fu, W.; Wang, H.; Wang, C.; Mei, L.; Han, X.; Lin, X.; Zhu, S.: A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation. Biosens. Bioelectron. 77(1), 702–708 (2016) Fu, W.; Wang, H.; Wang, C.; Mei, L.; Han, X.; Lin, X.; Zhu, S.: A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation. Biosens. Bioelectron. 77(1), 702–708 (2016)
21.
go back to reference Wang, Yu; Angelova, Maia; Ali, Akhtar: Fuzzy clustering of time series gene expression data with cubic-spline. J. Biosci. Med. 1(3), 16–21 (2013) Wang, Yu; Angelova, Maia; Ali, Akhtar: Fuzzy clustering of time series gene expression data with cubic-spline. J. Biosci. Med. 1(3), 16–21 (2013)
22.
go back to reference Shalem, O.; Sanjana, N.E.; Zhang, F.: High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16(5), 299–311 (2015) Shalem, O.; Sanjana, N.E.; Zhang, F.: High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16(5), 299–311 (2015)
23.
go back to reference Kar, S.; Sharma, K.D.; Maitra, M.: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Syst. Appl. 42(1), 612–627 (2015) Kar, S.; Sharma, K.D.; Maitra, M.: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique. Expert Syst. Appl. 42(1), 612–627 (2015)
24.
go back to reference Mohammadi, M.; Noghabi, H.S.; Hodtani, G.A.; Mashhadi, H.R.: Robust and stable gene selection via maximum–minimum correntropy criterion. Genomics 107(2), 83–87 (2016) Mohammadi, M.; Noghabi, H.S.; Hodtani, G.A.; Mashhadi, H.R.: Robust and stable gene selection via maximum–minimum correntropy criterion. Genomics 107(2), 83–87 (2016)
25.
go back to reference Belean, B.; Terebes, R.; Bot, A.: Low-complexity PDE-based approach for automatic microarray image processing. Med. Biol. Eng. Comput. 53(2), 99–110 (2015) Belean, B.; Terebes, R.; Bot, A.: Low-complexity PDE-based approach for automatic microarray image processing. Med. Biol. Eng. Comput. 53(2), 99–110 (2015)
26.
go back to reference Harvey, B.; Ji, S.-Y.: Cloud-scale genomic signals processing for robust large-scale cancer genomic microarray data analysis. IEEE J. Biomed. Health Inform. 21(1), 238–245 (2015) Harvey, B.; Ji, S.-Y.: Cloud-scale genomic signals processing for robust large-scale cancer genomic microarray data analysis. IEEE J. Biomed. Health Inform. 21(1), 238–245 (2015)
27.
go back to reference Mohamad, M.S.; Deris, S.; Illias, R.M.: A hybrid of genetic algorithm and support vector machine for features selection and classification of gene expression microarray. Int. J. Comput. Intell. Appl. 5(1), 91–107 (2005) Mohamad, M.S.; Deris, S.; Illias, R.M.: A hybrid of genetic algorithm and support vector machine for features selection and classification of gene expression microarray. Int. J. Comput. Intell. Appl. 5(1), 91–107 (2005)
28.
go back to reference Krishnaiah, V.; Narsimha, G.; Chandra, N.S.: Diagnosis of lung cancer prediction system using data mining classification techniques. Int. J. Comput. Sci. Inf. Technol. 4(1), 39–45 (2013) Krishnaiah, V.; Narsimha, G.; Chandra, N.S.: Diagnosis of lung cancer prediction system using data mining classification techniques. Int. J. Comput. Sci. Inf. Technol. 4(1), 39–45 (2013)
29.
go back to reference Hengpraprohm, S.; Chongstitvatana, P.: Feature selection by weighted-SNR for cancer microarray data classification. Int. J. Innov. Comput. Inf. Control 5(12), 4627–4636 (2009) Hengpraprohm, S.; Chongstitvatana, P.: Feature selection by weighted-SNR for cancer microarray data classification. Int. J. Innov. Comput. Inf. Control 5(12), 4627–4636 (2009)
30.
go back to reference Kannan, S.R.; Devi, R.; Ramathilagam, S.; Hong, T.P.: Effective fuzzy possibilistic c-means: an analyzing cancer medical database. Soft Comput. 21(11), 2835–2845 (2017) Kannan, S.R.; Devi, R.; Ramathilagam, S.; Hong, T.P.: Effective fuzzy possibilistic c-means: an analyzing cancer medical database. Soft Comput. 21(11), 2835–2845 (2017)
31.
go back to reference Dwivedi, Ashok Kumar: Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput. Appl. 29(12), 1545–1554 (2018) Dwivedi, Ashok Kumar: Artificial neural network model for effective cancer classification using microarray gene expression data. Neural Comput. Appl. 29(12), 1545–1554 (2018)
32.
go back to reference Jamshid, P.; Khanteymoori, A.R.: A robust gene regulatory network inference method base on Kalman filter and linear regression. PloS one 13(7), e0200094 (2018) Jamshid, P.; Khanteymoori, A.R.: A robust gene regulatory network inference method base on Kalman filter and linear regression. PloS one 13(7), e0200094 (2018)
33.
go back to reference Senthilnath, J.; et al.: A novel hierarchical clustering technique based on splitting and merging. Int. J. Image Data Fusion 7(1), 19–41 (2016) Senthilnath, J.; et al.: A novel hierarchical clustering technique based on splitting and merging. Int. J. Image Data Fusion 7(1), 19–41 (2016)
34.
go back to reference Solorio-Fernández, S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F.: A new hybrid filter–wrapper feature selection method for clustering based on ranking. Neurocomputing 214, 866–880 (2016) Solorio-Fernández, S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F.: A new hybrid filter–wrapper feature selection method for clustering based on ranking. Neurocomputing 214, 866–880 (2016)
35.
go back to reference Lord, E.; et al.: Using the stability of objects to determine the number of clusters in datasets. Inf. Sci. 393, 29–46 (2017) Lord, E.; et al.: Using the stability of objects to determine the number of clusters in datasets. Inf. Sci. 393, 29–46 (2017)
36.
go back to reference Hu, Z.; Yevgeniy V. B.; Oleksii K. T. A deep cascade neuro-fuzzy system for high-dimensional online fuzzy clustering. In: 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP). IEEE, (2016) Hu, Z.; Yevgeniy V. B.; Oleksii K. T. A deep cascade neuro-fuzzy system for high-dimensional online fuzzy clustering. In: 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP). IEEE, (2016)
38.
go back to reference Fathabadi, Hassan: Power distribution network reconfiguration for power loss minimization using novel dynamic fuzzy c-means (DFCM) clustering based ANN approach. Int. J. Electr. Power Energy Syst. 78, 96–107 (2016) Fathabadi, Hassan: Power distribution network reconfiguration for power loss minimization using novel dynamic fuzzy c-means (DFCM) clustering based ANN approach. Int. J. Electr. Power Energy Syst. 78, 96–107 (2016)
39.
go back to reference Hai-Peng, C.; et al.: A novel automatic fuzzy clustering algorithm based on soft partition and membership information. Neurocomputing 236, 104–112 (2017) Hai-Peng, C.; et al.: A novel automatic fuzzy clustering algorithm based on soft partition and membership information. Neurocomputing 236, 104–112 (2017)
40.
go back to reference Pati, S.K.; Das, A.K.: Missing value estimation for microarray data through cluster analysis. Knowl. Inf. Syst. 1(1), 1–42 (2017) Pati, S.K.; Das, A.K.: Missing value estimation for microarray data through cluster analysis. Knowl. Inf. Syst. 1(1), 1–42 (2017)
41.
go back to reference Cai, Z.; Xu, D.; Zhang, Q.; Zhang, J.; Ngai, S.-M.; Shao, J.: Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol. BioSyst. 11(3), 791–800 (2015) Cai, Z.; Xu, D.; Zhang, Q.; Zhang, J.; Ngai, S.-M.; Shao, J.: Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol. BioSyst. 11(3), 791–800 (2015)
Metadata
Title
Microarray Filtering-Based Fuzzy C-Means Clustering and Classification in Genomic Signal Processing
Authors
Purnendu Mishra
Nilamani Bhoi
Publication date
19-06-2019
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 11/2019
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-03945-0

Other articles of this Issue 11/2019

Arabian Journal for Science and Engineering 11/2019 Go to the issue

Research Article - Computer Engineering and Computer Science

Bayesian Versus Convolutional Networks for Arabic Handwriting Recognition

Research Article - Computer Engineering and Computer Science

Computing Dynamic Slices of Concurrent Feature-Oriented Programs

Research Article - Computer Engineering and Computer Science

Passage-Based Text Summarization for Legal Information Retrieval

Premium Partners