Skip to main content
Top

2010 | OriginalPaper | Chapter

5. Microfluidic Packaging Process

Authors : Ebrahim Ghafar-Zadeh, Mohamad Sawan

Published in: CMOS Capacitive Sensors for Lab-on-Chip Applications

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A CMOS-based LoC system would require efficient microfluidic packaging to protect the circuitry from the biological and chemical analytes, as well as the external environment. Microfluidic packaging is also critical to direct the fluids towards the embedded sensors or actuators for analysis. Ideally, these microfluidic packaging components, including micro-channels, -chambers, -fittings, -valves and -pumps should be performed using a low temperature process with reliable hermetic bonding [278]. The leakage of analytes (especially of charged molecules, as is the case with many bioanalytes) from microfluidic components may increase the parasitic capacitances or resistances and thus affect the circuit characteristics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
76.
go back to reference Y. Chao, Y. Huang, B.L. Hassler, R.M. Worden, A.J. Mason, Amperometric electrochemical microsystem for a miniaturized protein biosensor array. IEEE Trans. Biomed. Circuits Syst. 3(3), 160-168 (2009)CrossRef Y. Chao, Y. Huang, B.L. Hassler, R.M. Worden, A.J. Mason, Amperometric electrochemical microsystem for a miniaturized protein biosensor array. IEEE Trans. Biomed. Circuits Syst. 3(3), 160-168 (2009)CrossRef
96.
go back to reference K. Fife, A. El-Gamal, H.S.P. Wong, A multi-aperture image sensor with 0.7 μm pixels in 0.11 μm CMOS technology. IEEE J. Solid State Circuits 43(12), 2990-3005 (2008) K. Fife, A. El-Gamal, H.S.P. Wong, A multi-aperture image sensor with 0.7 μm pixels in 0.11 μm CMOS technology. IEEE J. Solid State Circuits 43(12), 2990-3005 (2008)
140.
go back to reference E. Ghafar-Zadeh, M. Sawan, D. Therriault, CMOS-based capacitive sensor lab-on-chip: a multidisciplinary approach. Analog Integr. Circuits Signal Process. 59(1) (2009) E. Ghafar-Zadeh, M. Sawan, D. Therriault, CMOS-based capacitive sensor lab-on-chip: a multidisciplinary approach. Analog Integr. Circuits Signal Process. 59(1) (2009)
206.
go back to reference E. Ghafar-Zadeh, M. Sawan, D. Therriault, A 0.18-μm CMOS capacitive sensor Lab-on-Chip. Sens. Actuat. A: Phys. 141(2) (2008) E. Ghafar-Zadeh, M. Sawan, D. Therriault, A 0.18-μm CMOS capacitive sensor Lab-on-Chip. Sens. Actuat. A: Phys. 141(2) (2008)
278.
go back to reference M.A. Miled, M. Sawam, E. Ghafar-Zadeh, A dynamics decoder for first-order sigma-delta modulators dedicated to lab-on-chip applications. IEEE Trans. Signal Process. 57(10), 4076-4084 (2009)CrossRef M.A. Miled, M. Sawam, E. Ghafar-Zadeh, A dynamics decoder for first-order sigma-delta modulators dedicated to lab-on-chip applications. IEEE Trans. Signal Process. 57(10), 4076-4084 (2009)CrossRef
279.
go back to reference S. Hardt, F. Schönfeld, Microfluidic Technologies for Miniaturized Analysis Systems (Springer, New York, 2007)CrossRef S. Hardt, F. Schönfeld, Microfluidic Technologies for Miniaturized Analysis Systems (Springer, New York, 2007)CrossRef
280.
go back to reference M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps. Lab Chip 5, 545-552 (2005)CrossRef M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps. Lab Chip 5, 545-552 (2005)CrossRef
281.
go back to reference N.H. Tea, V. Milanovic, C.A. Zincke, J.S. Suehle, M. Gaitan, M.E. Zaghloul, J. Geist, Hybrid postprocessing etching for CMOS-compatible MEMS. J. Microelectromechan. Syst. 6(4), 363-372 (1997)CrossRef N.H. Tea, V. Milanovic, C.A. Zincke, J.S. Suehle, M. Gaitan, M.E. Zaghloul, J. Geist, Hybrid postprocessing etching for CMOS-compatible MEMS. J. Microelectromechan. Syst. 6(4), 363-372 (1997)CrossRef
282.
go back to reference P. Zheng-chun, L. Zhong-geng, M. Tondra, L. Chang-geng, M. Zhang, K. Lian, J. Goettert, J. Hormes, CMOS compatible integration of three-dimensional microfluidic systems based on low-temperature transfer of SU-8 films. J. Microelectromech. Syst. 15(3) (2006) P. Zheng-chun, L. Zhong-geng, M. Tondra, L. Chang-geng, M. Zhang, K. Lian, J. Goettert, J. Hormes, CMOS compatible integration of three-dimensional microfluidic systems based on low-temperature transfer of SU-8 films. J. Microelectromech. Syst. 15(3) (2006)
283.
go back to reference F.J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M.T. Arroyo, J.M. Ruano, I. Aramburu, Kepa Mayora, Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding. Micromech. Microeng. 14 (2004) F.J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M.T. Arroyo, J.M. Ruano, I. Aramburu, Kepa Mayora, Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding. Micromech. Microeng. 14 (2004)
284.
go back to reference G. Kaltsas, D.N. Pagonis, A.G. Nassiopoulou, Planar CMOS compatible process for the fabrication of buried microchannels in silicon, using porous-silicon technology. J. Microelectromech. Syst. 12(6), 863-872 (2003)CrossRef G. Kaltsas, D.N. Pagonis, A.G. Nassiopoulou, Planar CMOS compatible process for the fabrication of buried microchannels in silicon, using porous-silicon technology. J. Microelectromech. Syst. 12(6), 863-872 (2003)CrossRef
285.
go back to reference A. Rasmussen, M.E. Zaghloul, CMOS microfluidic fabrication technology for biomedicalapplications. 42nd Midwest Symposium on Circuits and Systems 2, 791-794 (1999) A. Rasmussen, M.E. Zaghloul, CMOS microfluidic fabrication technology for biomedicalapplications. 42nd Midwest Symposium on Circuits and Systems 2, 791-794 (1999)
286.
go back to reference E. Ghafar-Zadeh, M. Sawan, D. Therriault, A New approach for the integration of microfluidic structures to microelectronic devices. 4th Canadian Workshop on CMC Microsystems MEMS E. Ghafar-Zadeh, M. Sawan, D. Therriault, A New approach for the integration of microfluidic structures to microelectronic devices. 4th Canadian Workshop on CMC Microsystems MEMS
287.
go back to reference P.F. Man, D.K. Jones, C.H. Mastrangelo, Microfluidic plastic capillaries on silicon substrates: a new inexpensive technology for bioanalysis chips. IEEE Micro Electro Mechanical Systems (MEMS), 1997 P.F. Man, D.K. Jones, C.H. Mastrangelo, Microfluidic plastic capillaries on silicon substrates: a new inexpensive technology for bioanalysis chips. IEEE Micro Electro Mechanical Systems (MEMS), 1997
288.
go back to reference M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke. An integrated nanoliter DNA analysis device. Science 282(5388), 484-487 (16 October 1998) M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke. An integrated nanoliter DNA analysis device. Science 282(5388), 484-487 (16 October 1998)
289.
go back to reference A. Rasmussen, M. Gaitan, L.E. Locascio, M.E. Zaghloul, Fabrication techniques to realize CMOS-compatible microfluidicmicrochannels. J. Microelectromech. Syst. 10(2) (2001) A. Rasmussen, M. Gaitan, L.E. Locascio, M.E. Zaghloul, Fabrication techniques to realize CMOS-compatible microfluidicmicrochannels. J. Microelectromech. Syst. 10(2) (2001)
290.
go back to reference A. Rasmussen, Implementation and modeling of microfluidic components realized using CMOS technology. Angela, D.Sc., George Washington University, 2002 A. Rasmussen, Implementation and modeling of microfluidic components realized using CMOS technology. Angela, D.Sc., George Washington University, 2002
291.
go back to reference H. Lee, D. Ham, R.M. Westervelt, CMOS/microfluidic hybrid systems. Chapter III in CMOS Biotechnology (Springer, 2008) H. Lee, D. Ham, R.M. Westervelt, CMOS/microfluidic hybrid systems. Chapter III in CMOS Biotechnology (Springer, 2008)
292.
go back to reference H. Lee, Y. Liu, R.M. Westervelt, D. Ham, IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE J. Solid State Circuits 41(6) (2006) H. Lee, Y. Liu, R.M. Westervelt, D. Ham, IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE J. Solid State Circuits 41(6) (2006)
293.
go back to reference I. Chartier, C. Bory, A. Fuchs, D. Freida, N. Manaresi, M. Ruty, J. Bablet, L. Fulbert, Fabrication of hybrid plastic-silicon micro-fluidic devices for invidual cell manipulation by dielectrophoresis. Proc. SPIE 5345 (2004) I. Chartier, C. Bory, A. Fuchs, D. Freida, N. Manaresi, M. Ruty, J. Bablet, L. Fulbert, Fabrication of hybrid plastic-silicon micro-fluidic devices for invidual cell manipulation by dielectrophoresis. Proc. SPIE 5345 (2004)
294.
go back to reference P. Sethu, C.H. Mastrangelo, Cast epoxy-based microfluidic systems and their application in biotechnology. Sens. Actuat. B: Chem. 98(2), 337-346 (2004)CrossRef P. Sethu, C.H. Mastrangelo, Cast epoxy-based microfluidic systems and their application in biotechnology. Sens. Actuat. B: Chem. 98(2), 337-346 (2004)CrossRef
295.
go back to reference P. Sethu, C.H. Mastrangelo, Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems. Sens. Actuat. A: Phys. 104(3), 283-289 (2003)CrossRef P. Sethu, C.H. Mastrangelo, Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems. Sens. Actuat. A: Phys. 104(3), 283-289 (2003)CrossRef
296.
go back to reference P. Vulto, N. Glade, L. Altomare, J. Bablet, L. Tin, G. Del-Medoro, I. Chartier, N. Manaresi, M. Tartagni, R. Guerrieri, Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. J. Lab chip 5 (2005) P. Vulto, N. Glade, L. Altomare, J. Bablet, L. Tin, G. Del-Medoro, I. Chartier, N. Manaresi, M. Tartagni, R. Guerrieri, Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. J. Lab chip 5 (2005)
297.
go back to reference J.H. Song, M.J. Edirisinghe, J.R.G. Evans, Formulation and multilayer jet printing of ceramic inks. J. Am. Ceram. Soc. 82(12) (1999) J.H. Song, M.J. Edirisinghe, J.R.G. Evans, Formulation and multilayer jet printing of ceramic inks. J. Am. Ceram. Soc. 82(12) (1999)
298.
go back to reference S.L. Morissette, J.A. Lewis, P.G. Clem, J. Cesarano, D.B. Dimos, Direct-write fabrication of Pb(Nb,Zr,Ti)O3 devices: influence of paste rheology on print morphology and component properties, J. Am. Ceram. Soc. 84(11) (2001) S.L. Morissette, J.A. Lewis, P.G. Clem, J. Cesarano, D.B. Dimos, Direct-write fabrication of Pb(Nb,Zr,Ti)O3 devices: influence of paste rheology on print morphology and component properties, J. Am. Ceram. Soc. 84(11) (2001)
299.
go back to reference K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, B. Derby, Ink-jet printing of wax-based alumina suspensions. J. Am. Ceram. Soc. 84(11) (2001) K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, B. Derby, Ink-jet printing of wax-based alumina suspensions. J. Am. Ceram. Soc. 84(11) (2001)
300.
go back to reference J.A. Lewis, Direct-write assembly of ceramics from colloidal inks, Current. Opin. Solid State Mater. Sci. 6(3) (2002) J.A. Lewis, Direct-write assembly of ceramics from colloidal inks, Current. Opin. Solid State Mater. Sci. 6(3) (2002)
301.
go back to reference M. Xu, G.M. Gratson, E.B. Duoss, R.F. Shepherd, J.A. Lewis, Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Matter 16(9) (2006) M. Xu, G.M. Gratson, E.B. Duoss, R.F. Shepherd, J.A. Lewis, Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Matter 16(9) (2006)
302.
go back to reference G.M. Gratson, F. Garcia-Santamaria, V. Lousse, M. Xu, S. Fan, J.A. Lewis, P.V. Braun, Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18(4) (2006) G.M. Gratson, F. Garcia-Santamaria, V. Lousse, M. Xu, S. Fan, J.A. Lewis, P.V. Braun, Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18(4) (2006)
303.
go back to reference J.L. Simon, S. Michna, J.A. Lewis, E.D. Rekow, V.P. Thompson, J.E. Smay, A. Yampolsky, J.R. Parsons, J.L. Ricci, In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J. Biomed. Mater. Res. A 26(28) (2007) J.L. Simon, S. Michna, J.A. Lewis, E.D. Rekow, V.P. Thompson, J.E. Smay, A. Yampolsky, J.R. Parsons, J.L. Ricci, In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J. Biomed. Mater. Res. A 26(28) (2007)
304.
go back to reference J.G. Dellinger, J. Cesarano 3rd, RD Jamison Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J. Biomed. Mater. Res. A 82(2) (2007) J.G. Dellinger, J. Cesarano 3rd, RD Jamison Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J. Biomed. Mater. Res. A 82(2) (2007)
305.
go back to reference D. Therriault, S.R. White, J.A. Lewis, Chaotic mixing in three-dimensional microvascular networks. Nat. Mater. 2(4) (2003) D. Therriault, S.R. White, J.A. Lewis, Chaotic mixing in three-dimensional microvascular networks. Nat. Mater. 2(4) (2003)
306.
go back to reference E. Ghafar-Zadeh, M. Sawan, D. Therriault, A microfluidic packaging technique for lab-on-chip applications. EEE Techol. Adv. Pack. 32(2) (2009) E. Ghafar-Zadeh, M. Sawan, D. Therriault, A microfluidic packaging technique for lab-on-chip applications. EEE Techol. Adv. Pack. 32(2) (2009)
307.
go back to reference M. Hajj-Hassan, T. Gonzalez, E. Ghafar-Zadeh, H. Djeghelian, V. Chodavarapu, M. Andrews, D. Therriault, Direct-dispense polymeric waveguides platform for optical chemical sensors. Sensors 8(12) (2008) M. Hajj-Hassan, T. Gonzalez, E. Ghafar-Zadeh, H. Djeghelian, V. Chodavarapu, M. Andrews, D. Therriault, Direct-dispense polymeric waveguides platform for optical chemical sensors. Sensors 8(12) (2008)
308.
go back to reference M. Kuhn, T. Napporn, M. Meunier, S. Vengallatore, D. Therriault, Direct-write microfabrication of single-chamber micro solid oxide fuel cells. J. Micromech. Microeng. 18(1) (2008) M. Kuhn, T. Napporn, M. Meunier, S. Vengallatore, D. Therriault, Direct-write microfabrication of single-chamber micro solid oxide fuel cells. J. Micromech. Microeng. 18(1) (2008)
309.
go back to reference M. Kuhn, T. Napporn, M. Meunier, D. Therriault, S. Vengallatore, Direct-write microfabrication of single-chamber solid oxide fuel cells with interdigitated electrodes. Mater. Res. Soc. Symp. Proc. 972 (2007) M. Kuhn, T. Napporn, M. Meunier, D. Therriault, S. Vengallatore, Direct-write microfabrication of single-chamber solid oxide fuel cells with interdigitated electrodes. Mater. Res. Soc. Symp. Proc. 972 (2007)
310.
go back to reference M. Kuhn, T. Napporn, M. Meunier, D. Therriault, S. Vengallatore, Fabrication and testing of coplanar single-chamber micro solid oxide fuel cells with geometrically complex electrodes. J. Power Source. 177(1) (2008) M. Kuhn, T. Napporn, M. Meunier, D. Therriault, S. Vengallatore, Fabrication and testing of coplanar single-chamber micro solid oxide fuel cells with geometrically complex electrodes. J. Power Source. 177(1) (2008)
311.
go back to reference T. Hibino, H. Iwahara, Simplification of solid oxide fuel cell systems using partial oxidation of methane. Chem. Lett. 7 (1993) T. Hibino, H. Iwahara, Simplification of solid oxide fuel cell systems using partial oxidation of methane. Chem. Lett. 7 (1993)
312.
go back to reference M. Nagao, M. Yano, K. Okamoto, A. Tomita, Y. Uchiyama, N. Uchiyama, T. Hibino, A single-chamber sofc stack: energy recovery from engine exhaust. Fuel Cell. 8(5) (2008) M. Nagao, M. Yano, K. Okamoto, A. Tomita, Y. Uchiyama, N. Uchiyama, T. Hibino, A single-chamber sofc stack: energy recovery from engine exhaust. Fuel Cell. 8(5) (2008)
313.
go back to reference Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, S.A. Barnett, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435(7043) (2005) Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, S.A. Barnett, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435(7043) (2005)
314.
go back to reference B. Morel, R. Roberge, S. Savoie, T. W. Napporn, M. Meunier, An experimental evaluation of the temperature gradient in solid oxide fuel cells. Electrochem. Solid State Lett. 10(2) (2007) B. Morel, R. Roberge, S. Savoie, T. W. Napporn, M. Meunier, An experimental evaluation of the temperature gradient in solid oxide fuel cells. Electrochem. Solid State Lett. 10(2) (2007)
315.
go back to reference D. Therriault, R.F. Shepherd, S.R. White, J.A. Lewis, Fugitive inks for direct-write assembly of 3-D microvascular networks. Adv. Mater. 17(4) D. Therriault, R.F. Shepherd, S.R. White, J.A. Lewis, Fugitive inks for direct-write assembly of 3-D microvascular networks. Adv. Mater. 17(4)
316.
go back to reference B.R. Flachsbart, K. Wong, J.M. Iannacone, E.N. Abante, R.L. Vlach, P.A. Rauchfuss, P.W. Bohn, J.V. Sweedler, M.A. Shannon, Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6, 667-674 (2006)CrossRef B.R. Flachsbart, K. Wong, J.M. Iannacone, E.N. Abante, R.L. Vlach, P.A. Rauchfuss, P.W. Bohn, J.V. Sweedler, M.A. Shannon, Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6, 667-674 (2006)CrossRef
317.
go back to reference X.B. Chen, W.J. Zhang, G. Schoenau, B. Surgenor, Off-line control of time-pressure dispensing processes for electronics packaging. IEEE Trans. Electron. Pack. Manuf. 26(4) (2003) X.B. Chen, W.J. Zhang, G. Schoenau, B. Surgenor, Off-line control of time-pressure dispensing processes for electronics packaging. IEEE Trans. Electron. Pack. Manuf. 26(4) (2003)
318.
go back to reference X.B. Chen, H. Ke, Effects of fluid properties on dispensing processes for electronics packaging. IEEE Trans. Electron. Pack. Manuf. 29(2) (2006) X.B. Chen, H. Ke, Effects of fluid properties on dispensing processes for electronics packaging. IEEE Trans. Electron. Pack. Manuf. 29(2) (2006)
320.
go back to reference E. Ghafar-Zadeh, M. Sawan, D. Therriault, Direct-write fabrication of microchannel in epoxy resin. ASME Mechanical Engineering Congress and Exposition(IMECE), Orlando, FL, 2005 E. Ghafar-Zadeh, M. Sawan, D. Therriault, Direct-write fabrication of microchannel in epoxy resin. ASME Mechanical Engineering Congress and Exposition(IMECE), Orlando, FL, 2005
321.
go back to reference H. Becker, C. Gärtner, Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 39(1) (2008) H. Becker, C. Gärtner, Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 39(1) (2008)
322.
go back to reference R.H. Liu, Q. Yu, D.J. Beebe, Fabrication and characterization of hydrogel-based microvalves. J. Microelectromech. Syst. 11(1) (2002) R.H. Liu, Q. Yu, D.J. Beebe, Fabrication and characterization of hydrogel-based microvalves. J. Microelectromech. Syst. 11(1) (2002)
323.
go back to reference T. Miyata, N. Asami, T. Uragami, A reversibly antigen-responsive hydrogel. Nature 399(766) (1999) T. Miyata, N. Asami, T. Uragami, A reversibly antigen-responsive hydrogel. Nature 399(766) (1999)
324.
go back to reference Liang Dong, Hongrui Jiang, Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter. 3(10) (2007) Liang Dong, Hongrui Jiang, Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter. 3(10) (2007)
325.
go back to reference J. Wang, Z. Chen, M. Mauk, K. Sheng Hong, M. Li, S. Yang, H.H. Baul, Self-actuated, thermo-responsive hydrogel valves for labon a chip. Biomed. Device. 7(4) (2005) J. Wang, Z. Chen, M. Mauk, K. Sheng Hong, M. Li, S. Yang, H.H. Baul, Self-actuated, thermo-responsive hydrogel valves for labon a chip. Biomed. Device. 7(4) (2005)
326.
go back to reference E. Ghafar-Zadeh, M. Sawan, V. Chodavarapu, A direct-write microfluidic fabrication process for CMOS-based Lab-on-Chip applications. Microelectron. Eng. 86(10) (2009) E. Ghafar-Zadeh, M. Sawan, V. Chodavarapu, A direct-write microfluidic fabrication process for CMOS-based Lab-on-Chip applications. Microelectron. Eng. 86(10) (2009)
327.
go back to reference M.L. Berre, G. Pandraud, P. Morfouli, M. Lallemand, The performance of micro heat pipes measured by integrated sensors. J. Micromech. Microeng. 16 (2006) M.L. Berre, G. Pandraud, P. Morfouli, M. Lallemand, The performance of micro heat pipes measured by integrated sensors. J. Micromech. Microeng. 16 (2006)
328.
go back to reference R. Bey-Oueslati, S. Martel, D. Therriaul, Micro heat pipe fabrication: high performance deposition platform for electronic industry. International Workshop on Microfactories, 2006 R. Bey-Oueslati, S. Martel, D. Therriaul, Micro heat pipe fabrication: high performance deposition platform for electronic industry. International Workshop on Microfactories, 2006
329.
go back to reference P. de la Fuentea, J.A. Etxeberriaa, J. Berganzob, J.M. Ruano-Lópezb, M.T. Arroyob, E. Castañoa, F.J. Graciaa, End-fire coupling of a SU-8 waveguide to a silicon mesa photodiode: Integrability in an optical analysis microsystem. Sens. Actuat. A: Phys. 123-124, 313-318 (2005) P. de la Fuentea, J.A. Etxeberriaa, J. Berganzob, J.M. Ruano-Lópezb, M.T. Arroyob, E. Castañoa, F.J. Graciaa, End-fire coupling of a SU-8 waveguide to a silicon mesa photodiode: Integrability in an optical analysis microsystem. Sens. Actuat. A: Phys. 123-124, 313-318 (2005)
Metadata
Title
Microfluidic Packaging Process
Authors
Ebrahim Ghafar-Zadeh
Mohamad Sawan
Copyright Year
2010
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-3727-5_5