Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 1/2015

01-01-2015

Microstructural Dependence of Work Hardening Behavior in Martensite-Ferrite Microalloyed Steels

Authors: N. Anand, S. Sankaran, R. Madhavan, Satyam Suwas, P. Venugopal

Published in: Journal of Materials Engineering and Performance | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Martensite-ferrite microstructures were produced in four microalloyed steels A (Fe-0.44C-Cr-V), B (Fe-0.26C-Cr-V), C (Fe-0.34C-Cr-Ti-V), and D (Fe-0.23C-Cr-V) by intercritical annealing. SEM analysis reveals that steels A and C contained higher martensite fraction and finer ferrite when compared to steels B and D which contained coarser ferrite grains and lower martensite fraction. A network of martensite phase surrounding the ferrite grains was found in all the steels. Crystallographic texture was very weak in these steels as indicated by EBSD analysis. The steels contained negligible volume fraction of retained austenite (approx. 3-6%). TEM analysis revealed the presence of twinned and lath martensite in these steels along with ferrite. Precipitates (carbides and nitrides) of Ti and V of various shapes with few nanometers size were found, particularly in the microstructures of steel B. Work hardening behavior of these steels at ambient temperature was evaluated through modified Jaoul-Crussard analysis, and it was characterized by two stages due to presence of martensite and ferrite phases in their microstructure. Steel A displayed large work hardening among other steel compositions. Work hardening behavior of the steels at a warm working temperature of 540 °C was characterized by a single stage due to the decomposition of martensite into ferrite and carbides at this temperature as indicated by SEM images of the steels after warm deformation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W.B. Morrison, Past and future development of HSLA steels. Proceedings Vanitec Symposium, Guilin, China, 2000, p. 25 W.B. Morrison, Past and future development of HSLA steels. Proceedings Vanitec Symposium, Guilin, China, 2000, p. 25
2.
go back to reference A. Babakhani, S. Ziaei, and A. Kiani-Rashid, Investigation on the effects of hot forging parameters on the austenite grain size of vanadium microalloyed forging steel (30MSV6), J. Alloys Compd., 2010, 490(1), p 572–575CrossRef A. Babakhani, S. Ziaei, and A. Kiani-Rashid, Investigation on the effects of hot forging parameters on the austenite grain size of vanadium microalloyed forging steel (30MSV6), J. Alloys Compd., 2010, 490(1), p 572–575CrossRef
3.
go back to reference B. Eghbali, Microstructural characterization of a warm-deformed microalloyed steel, Mater. Charact., 2008, 59(4), p 473–478CrossRef B. Eghbali, Microstructural characterization of a warm-deformed microalloyed steel, Mater. Charact., 2008, 59(4), p 473–478CrossRef
4.
go back to reference Q. Li, T.-S. Wang, H.-B. Li, Y.-W. Gao, N. Li, and T.-F. Jing, Warm deformation behavior of steels containing carbon of 0. 45% to 1.26% with martensite starting structure, J. Iron Steel Res. Int., 2010, 17(5), p 34–37CrossRef Q. Li, T.-S. Wang, H.-B. Li, Y.-W. Gao, N. Li, and T.-F. Jing, Warm deformation behavior of steels containing carbon of 0. 45% to 1.26% with martensite starting structure, J. Iron Steel Res. Int., 2010, 17(5), p 34–37CrossRef
5.
go back to reference S. Murty, S. Torizuka, and K. Nagai, Microstructural evolution during simple heavy warm compression of a low carbon steel: Development of a processing map, Mater. Sci. Eng. A, 2005, 410, p 319–323CrossRef S. Murty, S. Torizuka, and K. Nagai, Microstructural evolution during simple heavy warm compression of a low carbon steel: Development of a processing map, Mater. Sci. Eng. A, 2005, 410, p 319–323CrossRef
6.
go back to reference B. Eghbali and M. Shaban, Warm deformation microstructure of a plain carbon steel, J. Iron Steel Res. Int., 2011, 18(7), p 41–46CrossRef B. Eghbali and M. Shaban, Warm deformation microstructure of a plain carbon steel, J. Iron Steel Res. Int., 2011, 18(7), p 41–46CrossRef
7.
go back to reference J. Majta and A. Bator, Mechanical behaviour of hot and warm formed microalloyed steels, J. Mater. Process. Technol., 2002, 125, p 77–83CrossRef J. Majta and A. Bator, Mechanical behaviour of hot and warm formed microalloyed steels, J. Mater. Process. Technol., 2002, 125, p 77–83CrossRef
8.
go back to reference H. Mirzadeh, J. Cabrera, J. Prado, and A. Najafizadeh, Hot deformation behavior of a medium carbon microalloyed steel, Mater. Sci. Eng. A, 2011, 528(10), p 3876–3882CrossRef H. Mirzadeh, J. Cabrera, J. Prado, and A. Najafizadeh, Hot deformation behavior of a medium carbon microalloyed steel, Mater. Sci. Eng. A, 2011, 528(10), p 3876–3882CrossRef
9.
go back to reference M.A. Razzak, Heat treatment and effects of Cr and Ni in low alloy steel, Bull. Mater. Sci., 2011, 34(7), p 1439–1445CrossRef M.A. Razzak, Heat treatment and effects of Cr and Ni in low alloy steel, Bull. Mater. Sci., 2011, 34(7), p 1439–1445CrossRef
10.
go back to reference H. Saghafian and S. Kheirandish, Correlating microstructural features with wear resistance of dual phase steel, Mater. Lett., 2007, 61(14), p 3059–3063CrossRef H. Saghafian and S. Kheirandish, Correlating microstructural features with wear resistance of dual phase steel, Mater. Lett., 2007, 61(14), p 3059–3063CrossRef
11.
go back to reference M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater., 2011, 59(2), p 658–670CrossRef M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater., 2011, 59(2), p 658–670CrossRef
12.
go back to reference N.J. Lourenço, A.M. Jorge, Jr., J.M.A. Rollo, and O. Balancin, Plastic behavior of medium carbon vanadium microalloyed steel at temperatures near gamma<-> alpha transformation, Mater. Res., 2001, 4(3), p 149–156CrossRef N.J. Lourenço, A.M. Jorge, Jr., J.M.A. Rollo, and O. Balancin, Plastic behavior of medium carbon vanadium microalloyed steel at temperatures near gamma<-> alpha transformation, Mater. Res., 2001, 4(3), p 149–156CrossRef
13.
go back to reference M. Grujicic, T. Erturk, and W.S. Owen, A finite element analysis of the effect of the accommodation strains in the ferrite phase on the work hardening of a dual-phase steel, Mater. Sci. Eng., 1986, 82, p 151–159CrossRef M. Grujicic, T. Erturk, and W.S. Owen, A finite element analysis of the effect of the accommodation strains in the ferrite phase on the work hardening of a dual-phase steel, Mater. Sci. Eng., 1986, 82, p 151–159CrossRef
14.
go back to reference M.R. Akbarpour and A. Ekrami, Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels, Mater. Sci. Eng. A, 2008, 477(1), p 306–310CrossRef M.R. Akbarpour and A. Ekrami, Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels, Mater. Sci. Eng. A, 2008, 477(1), p 306–310CrossRef
15.
go back to reference K. Yoshida, R. Brenner, B. Bacroix, and S. Bouvier, Micromechanical modeling of the work-hardening behavior of single-and dual-phase steels under two-stage loading paths, Mater. Sci. Eng. A, 2011, 528(3), p 1037–1046CrossRef K. Yoshida, R. Brenner, B. Bacroix, and S. Bouvier, Micromechanical modeling of the work-hardening behavior of single-and dual-phase steels under two-stage loading paths, Mater. Sci. Eng. A, 2011, 528(3), p 1037–1046CrossRef
16.
go back to reference T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, and T. Maki, Variant selection in grain boundary nucleation of upper bainite, Metall. Mater. Trans. A, 2008, 39(5), p 1003–1013CrossRef T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, and T. Maki, Variant selection in grain boundary nucleation of upper bainite, Metall. Mater. Trans. A, 2008, 39(5), p 1003–1013CrossRef
17.
go back to reference Y. He, S. Godet, P.J. Jacques, and J.J. Jonas, Crystallographic features of the γ-to-α transformation in a Nb-added transformation-induced plasticity steel, Metall. Mater. Trans. A, 2006, 37(9), p 2641–2653CrossRef Y. He, S. Godet, P.J. Jacques, and J.J. Jonas, Crystallographic features of the γ-to-α transformation in a Nb-added transformation-induced plasticity steel, Metall. Mater. Trans. A, 2006, 37(9), p 2641–2653CrossRef
18.
go back to reference C. Cayron, B. Artaud, and L. Briottet, Reconstruction of parent grains from EBSD data, Mater. Charact., 2006, 57(4), p 386–401CrossRef C. Cayron, B. Artaud, and L. Briottet, Reconstruction of parent grains from EBSD data, Mater. Charact., 2006, 57(4), p 386–401CrossRef
19.
go back to reference M. Abbasi, T.W. Nelson, C.D. Sorensen, and L. Wei, An approach to prior austenite reconstruction, Mater. Charact., 2012, 66, p 1–8CrossRef M. Abbasi, T.W. Nelson, C.D. Sorensen, and L. Wei, An approach to prior austenite reconstruction, Mater. Charact., 2012, 66, p 1–8CrossRef
20.
go back to reference M. Abbasi, T.W. Nelson, and C.D. Sorensen, Transformation and deformation texture study in friction stir processed API, X80 pipeline steel, Metall. Mater. Trans. A, 2012, 43(13), p 4940–4946CrossRef M. Abbasi, T.W. Nelson, and C.D. Sorensen, Transformation and deformation texture study in friction stir processed API, X80 pipeline steel, Metall. Mater. Trans. A, 2012, 43(13), p 4940–4946CrossRef
21.
go back to reference J. Wang, P.J. van der Wolk, and S. van der Zwaag, Determination of martensite start temperature in engineering steels. Part I. Empirical relations describing the effect of steel chemistry, Mater. Trans. JIM, 2000, 41(7), p 761–768CrossRef J. Wang, P.J. van der Wolk, and S. van der Zwaag, Determination of martensite start temperature in engineering steels. Part I. Empirical relations describing the effect of steel chemistry, Mater. Trans. JIM, 2000, 41(7), p 761–768CrossRef
22.
go back to reference R. Thridandapani, R. Misra, T. Mannering, D. Panda, and S. Jansto, The application of stereological analysis in understanding differences in toughness of V-and Nb-microalloyed steels of similar yield strength, Mater. Sci. Eng. A, 2006, 422(1), p 285–291CrossRef R. Thridandapani, R. Misra, T. Mannering, D. Panda, and S. Jansto, The application of stereological analysis in understanding differences in toughness of V-and Nb-microalloyed steels of similar yield strength, Mater. Sci. Eng. A, 2006, 422(1), p 285–291CrossRef
23.
go back to reference M. Calcagnotto, D. Ponge, and D. Raabe, On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels, Metall. Mater. Trans. A, 2012, 43(1), p 37–46CrossRef M. Calcagnotto, D. Ponge, and D. Raabe, On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels, Metall. Mater. Trans. A, 2012, 43(1), p 37–46CrossRef
24.
go back to reference R. Honeycombe, H. Bhadeshia, Steels, Microstructure and Properties, 1995 R. Honeycombe, H. Bhadeshia, Steels, Microstructure and Properties, 1995
25.
go back to reference K. Maweja, W. Stumpf, and N. van der Berg, Characteristics of martensite as a function of the Ms temperature in low-carbon armour steel plates, Mater. Sci. Eng. A, 2009, 519(1), p 121–127CrossRef K. Maweja, W. Stumpf, and N. van der Berg, Characteristics of martensite as a function of the Ms temperature in low-carbon armour steel plates, Mater. Sci. Eng. A, 2009, 519(1), p 121–127CrossRef
26.
go back to reference M. Calcagnotto, D. Ponge, and D. Raabe, Ultrafine grained ferrite/martensite dual phase steel fabricated by large strain warm deformation and subsequent intercritical annealing, ISIJ Int., 2008, 48(8), p 1096–1101CrossRef M. Calcagnotto, D. Ponge, and D. Raabe, Ultrafine grained ferrite/martensite dual phase steel fabricated by large strain warm deformation and subsequent intercritical annealing, ISIJ Int., 2008, 48(8), p 1096–1101CrossRef
27.
go back to reference S. Biswas, D.-I. Kim, and S. Suwas, Asymmetric and symmetric rolling of magnesium: evolution of microstructure, texture and mechanical properties, Mater. Sci. Eng. A, 2012, 550, p 19–30CrossRef S. Biswas, D.-I. Kim, and S. Suwas, Asymmetric and symmetric rolling of magnesium: evolution of microstructure, texture and mechanical properties, Mater. Sci. Eng. A, 2012, 550, p 19–30CrossRef
28.
go back to reference Z. Tang and W. Stumpf, The role of molybdenum additions and prior deformation on acicular ferrite formation in microalloyed Nb-Ti low-carbon line-pipe steels, Mater. Charact., 2008, 59(6), p 717–728CrossRef Z. Tang and W. Stumpf, The role of molybdenum additions and prior deformation on acicular ferrite formation in microalloyed Nb-Ti low-carbon line-pipe steels, Mater. Charact., 2008, 59(6), p 717–728CrossRef
29.
go back to reference M. Charleux, W.J. Poole, M. Militzer, and A. Deschamps, Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel, Metall. Mater. Trans. A, 2001, 32(7), p 1635–1647CrossRef M. Charleux, W.J. Poole, M. Militzer, and A. Deschamps, Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel, Metall. Mater. Trans. A, 2001, 32(7), p 1635–1647CrossRef
30.
go back to reference G. Maciejewski, S. Stupkiewicz, and H. Petryk, Elastic micro-strain energy at the austenite-twinned martensite interface, Arch. Mech., 2005, 57(4), p 277–297 G. Maciejewski, S. Stupkiewicz, and H. Petryk, Elastic micro-strain energy at the austenite-twinned martensite interface, Arch. Mech., 2005, 57(4), p 277–297
31.
go back to reference O.D. Sherby, J. Wadsworth, D.R. Lesuer, and C.K. Syn, Revisiting the structure of martensite in iron-carbon steels, Mater. Trans., 2008, 49(09), p 2016–2027CrossRef O.D. Sherby, J. Wadsworth, D.R. Lesuer, and C.K. Syn, Revisiting the structure of martensite in iron-carbon steels, Mater. Trans., 2008, 49(09), p 2016–2027CrossRef
32.
go back to reference O. Johari and G. Thomas, Factors determining twinning in martensite, Acta Metall., 1965, 13(11), p 1211–1212CrossRef O. Johari and G. Thomas, Factors determining twinning in martensite, Acta Metall., 1965, 13(11), p 1211–1212CrossRef
33.
go back to reference G. Dini, A. Najafizadeh, S.M. Monir-Vaghefi, and R. Ueji, Grain size effect on the martensite formation in a high-manganese TWIP steel by the Rietveld method, J. Mater. Sci. Technol., 2010, 26(2), p 181–186CrossRef G. Dini, A. Najafizadeh, S.M. Monir-Vaghefi, and R. Ueji, Grain size effect on the martensite formation in a high-manganese TWIP steel by the Rietveld method, J. Mater. Sci. Technol., 2010, 26(2), p 181–186CrossRef
34.
go back to reference R. Anumolu, B.R. Kumar, R. Misra, T. Mannering, D. Panda, and S. Jansto, On the determining role of microstructure of niobium-microalloyed steels with differences in impact toughness, Mater. Sci. Eng. A, 2008, 491(1), p 55–61CrossRef R. Anumolu, B.R. Kumar, R. Misra, T. Mannering, D. Panda, and S. Jansto, On the determining role of microstructure of niobium-microalloyed steels with differences in impact toughness, Mater. Sci. Eng. A, 2008, 491(1), p 55–61CrossRef
35.
go back to reference M. Prikryl, A. Kroupa, G.C. Weatherly, and S.V. Subramanian, Precipitation behavior in a medium carbon, Ti-VN microalloyed steel, Metall. Mater. Trans. A, 1996, 27(5), p 1149–1165CrossRef M. Prikryl, A. Kroupa, G.C. Weatherly, and S.V. Subramanian, Precipitation behavior in a medium carbon, Ti-VN microalloyed steel, Metall. Mater. Trans. A, 1996, 27(5), p 1149–1165CrossRef
36.
go back to reference T.N. Baker, Processes, microstructure and properties of vanadium microalloyed steels, Mater. Sci. Technol., 2009, 25(9), p 1083–1107CrossRef T.N. Baker, Processes, microstructure and properties of vanadium microalloyed steels, Mater. Sci. Technol., 2009, 25(9), p 1083–1107CrossRef
37.
go back to reference S.F. Medina, Determination of precipitation-time-temperature (PTT) diagrams for Nb, Ti or V micro-alloyed steels, J. Mater. Sci., 1997, 32(6), p 1487–1492CrossRef S.F. Medina, Determination of precipitation-time-temperature (PTT) diagrams for Nb, Ti or V micro-alloyed steels, J. Mater. Sci., 1997, 32(6), p 1487–1492CrossRef
38.
go back to reference Z.K. Liu, Thermodynamic calculations of carbonitrides in microalloyed steels, Scr. Mater., 2004, 50(5), p 601–606CrossRef Z.K. Liu, Thermodynamic calculations of carbonitrides in microalloyed steels, Scr. Mater., 2004, 50(5), p 601–606CrossRef
39.
go back to reference A. Schneider, C. Stallybrass, J. Konrad, A. Kulgemeyer, H. Meuser, and S. Meimeth, Formation of primary TiN precipitates during solidification of microalloyed steels-Scheil versus DICTRA simulations, Int. J. Mater. Res., 2008, 99(6), p 674–679CrossRef A. Schneider, C. Stallybrass, J. Konrad, A. Kulgemeyer, H. Meuser, and S. Meimeth, Formation of primary TiN precipitates during solidification of microalloyed steels-Scheil versus DICTRA simulations, Int. J. Mater. Res., 2008, 99(6), p 674–679CrossRef
40.
go back to reference K. Xu, B.G. Thomas, and R. O’malley, Equilibrium model of precipitation in microalloyed steels, Metall. Mater. Trans. A, 2011, 42(2), p 524–539CrossRef K. Xu, B.G. Thomas, and R. O’malley, Equilibrium model of precipitation in microalloyed steels, Metall. Mater. Trans. A, 2011, 42(2), p 524–539CrossRef
41.
go back to reference E. Ahmad, T. Manzoor, and N. Hussain, Thermomechanical processing in the intercritical region and tensile properties of dual-phase steel, Mater. Sci. Eng. A, 2009, 508(1), p 259–265CrossRef E. Ahmad, T. Manzoor, and N. Hussain, Thermomechanical processing in the intercritical region and tensile properties of dual-phase steel, Mater. Sci. Eng. A, 2009, 508(1), p 259–265CrossRef
42.
go back to reference Y. Son, Y.K. Lee, K. Park, C.S. Lee, and D.H. Shin, Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties, Acta Mater., 2005, 53(11), p 3125–3134CrossRef Y. Son, Y.K. Lee, K. Park, C.S. Lee, and D.H. Shin, Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties, Acta Mater., 2005, 53(11), p 3125–3134CrossRef
43.
go back to reference Y. Tomota, K. Kuroki, T. Mori, and I. Tamura, Tensile deformation of two-ductile-phase alloys: Flow curves of α-γ Fe-Cr-Ni alloys, Mater. Sci. Eng., 1976, 24(1), p 85–94CrossRef Y. Tomota, K. Kuroki, T. Mori, and I. Tamura, Tensile deformation of two-ductile-phase alloys: Flow curves of α-γ Fe-Cr-Ni alloys, Mater. Sci. Eng., 1976, 24(1), p 85–94CrossRef
44.
go back to reference R. D. Lawson, D. K. Matlock and G. Krauss, The effect of microstructure on the deformation behavior and mechanical properties of a dual-phase steel, Fundamentals of Dual-Phase Steels, 1981, p. 347–381 R. D. Lawson, D. K. Matlock and G. Krauss, The effect of microstructure on the deformation behavior and mechanical properties of a dual-phase steel, Fundamentals of Dual-Phase Steels, 1981, p. 347–381
45.
go back to reference A. Zare and A. Ekrami, Effect of martensite volume fraction on work hardening behavior of triple phase (TP) steels, Mater. Sci. Eng. A, 2011, 528(13), p 4422–4426CrossRef A. Zare and A. Ekrami, Effect of martensite volume fraction on work hardening behavior of triple phase (TP) steels, Mater. Sci. Eng. A, 2011, 528(13), p 4422–4426CrossRef
46.
go back to reference D.N. Hawkins, Warm working of steels, J. Mech. Work. Technol., 1985, 11(1), p 5–21CrossRef D.N. Hawkins, Warm working of steels, J. Mech. Work. Technol., 1985, 11(1), p 5–21CrossRef
47.
go back to reference X. Zhao and T. Jing, Warm deformation behavior of medium carbon steel with different initial microstructures, Mater. Sci. Eng. A, 2012, 543, p 267–270CrossRef X. Zhao and T. Jing, Warm deformation behavior of medium carbon steel with different initial microstructures, Mater. Sci. Eng. A, 2012, 543, p 267–270CrossRef
Metadata
Title
Microstructural Dependence of Work Hardening Behavior in Martensite-Ferrite Microalloyed Steels
Authors
N. Anand
S. Sankaran
R. Madhavan
Satyam Suwas
P. Venugopal
Publication date
01-01-2015
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 1/2015
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1270-7

Other articles of this Issue 1/2015

Journal of Materials Engineering and Performance 1/2015 Go to the issue

Premium Partners