Skip to main content
Top
Published in: Strength of Materials 6/2021

03-03-2022

Microstructural Verification, Mechanical and Wear Analysis of MoTaNbVxTi Refractory High-Entropy Alloys

Authors: A. Poulia, C. Mathiou, E. Georgatis, A. E. Karantzalis

Published in: Strength of Materials | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

MoTaNbVxTi (x = 0.25, 0.50, and 0.75 at.%) refractory high-entropy alloys were synthesized via vacuum arc melting. The cross-sectional microstructural investigation revealed a Ti segregation tendency in the interdendritic area and a mostly homogeneous distribution of the rest elements in the dendritic parts. The calculated empirical models further verified the aforementioned microstructural evidence. Regarding the alloys’ mechanical investigation, both Vickers microhardness and Rockwell hardness estimations were escalated to values higher than those of the constituent elements, suggesting the operation of a solid solution strengthening mechanism. In terms of compression, the alteration of V content seemed to affect the alloys’ response, since the alloys with increased V content exhibited improved properties. The fracture surfaces presented cleavage/tearing characteristics, with the river-like patterns’ presence, defining their modes. In terms of their work-hardening rate, the alloys exhibited two regimes during the compression test due to possible changes in the deformation mechanisms. Finally, wear rate values verified that the harder the alloy (increased V content), the greater the wear resistance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. W. Yeh, S. K. Chen, S. U. J. Lin, et al., “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater., 6, 299–303 (2004).CrossRef Y. W. Yeh, S. K. Chen, S. U. J. Lin, et al., “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater., 6, 299–303 (2004).CrossRef
2.
go back to reference C. Ng, S. Guo, J. Luan, et al., “Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy,” Intermetallics, 31, 165–172 (2012).CrossRef C. Ng, S. Guo, J. Luan, et al., “Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy,” Intermetallics, 31, 165–172 (2012).CrossRef
3.
go back to reference S. Varalakshmi, M. Kamaraj, and B. S. Murty, “Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying,” Mater. Sci. Eng. A., 527, 1027–1030 (2010).CrossRef S. Varalakshmi, M. Kamaraj, and B. S. Murty, “Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying,” Mater. Sci. Eng. A., 527, 1027–1030 (2010).CrossRef
4.
go back to reference Y. Zhang, T. T. Zuo, Z. Tang, et al., “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci., 61, 1–93 (2014).CrossRef Y. Zhang, T. T. Zuo, Z. Tang, et al., “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci., 61, 1–93 (2014).CrossRef
5.
go back to reference M. C. Troparevsky, J. R. Morris, P. R. C. Kent, et al., “Criteria for predicting the formation of single-phase high-entropy alloys,” Phys. Rev. X, 5, 011041-1–011041-6 (2015). M. C. Troparevsky, J. R. Morris, P. R. C. Kent, et al., “Criteria for predicting the formation of single-phase high-entropy alloys,” Phys. Rev. X, 5, 011041-1–011041-6 (2015).
6.
go back to reference D. J. M. King, S. C. Middleburgh, A. G. McGregor, and M. B. Cortie, “Predicting the formation and stability of single phase high-entropy alloys,” Acta Mater., 104, 172–179 (2016).CrossRef D. J. M. King, S. C. Middleburgh, A. G. McGregor, and M. B. Cortie, “Predicting the formation and stability of single phase high-entropy alloys,” Acta Mater., 104, 172–179 (2016).CrossRef
7.
go back to reference O. Senkov and D. B. Miracle, “A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys,” J. Alloy. Compd., 658, 603–607 (2016).CrossRef O. Senkov and D. B. Miracle, “A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys,” J. Alloy. Compd., 658, 603–607 (2016).CrossRef
8.
go back to reference M. C. Gao, J. W. Yeh, P. K. Liaw, and Y. Zhang, High-Entropy Alloys. Fundamentals and Applications, Springer (2016).CrossRef M. C. Gao, J. W. Yeh, P. K. Liaw, and Y. Zhang, High-Entropy Alloys. Fundamentals and Applications, Springer (2016).CrossRef
9.
go back to reference A. Shabani, M. R. Toroghinejad, A. Shafyei, and R. E. Loge, “Evaluation of the mechanical properties of the heat treated FeCrCuMnNi high entropy alloy,” Mater. Chem. Phys., 221, 68–77 (2019).CrossRef A. Shabani, M. R. Toroghinejad, A. Shafyei, and R. E. Loge, “Evaluation of the mechanical properties of the heat treated FeCrCuMnNi high entropy alloy,” Mater. Chem. Phys., 221, 68–77 (2019).CrossRef
10.
go back to reference J. Gu and M. Song, “Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy,” Scripta Mater., 162, 345–349 (2019).CrossRef J. Gu and M. Song, “Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy,” Scripta Mater., 162, 345–349 (2019).CrossRef
11.
go back to reference J. T. Liang, K. C. Cheng, and S. H. Chen, “Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders,” J. Alloy. Compd., 803, 484–490 (2019).CrossRef J. T. Liang, K. C. Cheng, and S. H. Chen, “Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders,” J. Alloy. Compd., 803, 484–490 (2019).CrossRef
12.
go back to reference X. Feng, K. Zhang, Y. Zheng, et al., “Effect of Zr content on structure and mechanical properties of (CrTaNbMoV)Zrx high-entropy alloy films,” Nucl. Instrum. Meth. B, 457, 56–62 (2019).CrossRef X. Feng, K. Zhang, Y. Zheng, et al., “Effect of Zr content on structure and mechanical properties of (CrTaNbMoV)Zrx high-entropy alloy films,” Nucl. Instrum. Meth. B, 457, 56–62 (2019).CrossRef
13.
go back to reference S. Elkatatny, M. A. H. Gepreel, A. Hamada, et al., “Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12Fe35Mn28Ni20 high-entropy alloy,” Mater. Sci. Eng. A, 759, 380–390 (2019).CrossRef S. Elkatatny, M. A. H. Gepreel, A. Hamada, et al., “Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12Fe35Mn28Ni20 high-entropy alloy,” Mater. Sci. Eng. A, 759, 380–390 (2019).CrossRef
14.
go back to reference C. R. LaRosa, M. Shih, C. Varvenne, and M. Ghazisaeidi, “Solid solution strengthening theories of high-entropy alloys,” Mater. Charact., 151, 310–317 (2019).CrossRef C. R. LaRosa, M. Shih, C. Varvenne, and M. Ghazisaeidi, “Solid solution strengthening theories of high-entropy alloys,” Mater. Charact., 151, 310–317 (2019).CrossRef
15.
go back to reference H. Song, D. G. Kim, D. W. Kim, et al., “Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy,” Sci. Rep., 9, 6163–6175 (2019).CrossRef H. Song, D. G. Kim, D. W. Kim, et al., “Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy,” Sci. Rep., 9, 6163–6175 (2019).CrossRef
16.
go back to reference J. M. Park, J. Moon, J. W. Bae, et al., “Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy,” Mater. Sci. Eng. A, 719, 155–163 (2018).CrossRef J. M. Park, J. Moon, J. W. Bae, et al., “Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy,” Mater. Sci. Eng. A, 719, 155–163 (2018).CrossRef
17.
go back to reference W. Li, G. Wang, S. Wu, and P. K. Liaw, “Creep, fatigue, and fracture behavior of high-entropy alloys,” J. Mater. Res., 33, 3011–3034 (2018).CrossRef W. Li, G. Wang, S. Wu, and P. K. Liaw, “Creep, fatigue, and fracture behavior of high-entropy alloys,” J. Mater. Res., 33, 3011–3034 (2018).CrossRef
18.
go back to reference S. H. Joo, H. Kato, M. J. Jang, et al., “Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy,” Mater. Sci. Eng. A, 689, 122–133 (2017).CrossRef S. H. Joo, H. Kato, M. J. Jang, et al., “Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy,” Mater. Sci. Eng. A, 689, 122–133 (2017).CrossRef
19.
go back to reference L. Rogal, Z. Szklarz, P. Bobrowski, et al., “Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni base high entropy alloys obtained using powder metallurgy,” Met. Mater. Int., 25, 930–945 (2019).CrossRef L. Rogal, Z. Szklarz, P. Bobrowski, et al., “Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni base high entropy alloys obtained using powder metallurgy,” Met. Mater. Int., 25, 930–945 (2019).CrossRef
20.
go back to reference O. Senkov, C. Woodward, and D. Miracle, “Microstructure and properties of aluminum-containing refractory high-entropy alloys,” JOM, 66, 2030–2042 (2014).CrossRef O. Senkov, C. Woodward, and D. Miracle, “Microstructure and properties of aluminum-containing refractory high-entropy alloys,” JOM, 66, 2030–2042 (2014).CrossRef
21.
go back to reference M. Annasamy, N. Haghdadi, A. Taylor, et al., “Dynamic recrystallization behaviour of AlxCoCrFeNi high entropy alloys during high-temperature plane strain compression,” Mater. Sci. Eng. A, 745, 90–106 (2019).CrossRef M. Annasamy, N. Haghdadi, A. Taylor, et al., “Dynamic recrystallization behaviour of AlxCoCrFeNi high entropy alloys during high-temperature plane strain compression,” Mater. Sci. Eng. A, 745, 90–106 (2019).CrossRef
22.
go back to reference R. Carroll, C. Lee, C. W. Tsai, et al., “Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys,” Sci. Rep., 5, 16997 (2015).CrossRef R. Carroll, C. Lee, C. W. Tsai, et al., “Experiments and model for serration statistics in low-entropy, medium-entropy, and high-entropy alloys,” Sci. Rep., 5, 16997 (2015).CrossRef
23.
go back to reference H. Y. Yasuda, K. Shigeno, and T. Nagase, “Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals,” Scripta Mater., 108, 80–83 (2015).CrossRef H. Y. Yasuda, K. Shigeno, and T. Nagase, “Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals,” Scripta Mater., 108, 80–83 (2015).CrossRef
24.
go back to reference M. Seifi, D. Li, Z. Yong, et al., “Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys,” JOM, 67, 2288–2295 (2015).CrossRef M. Seifi, D. Li, Z. Yong, et al., “Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys,” JOM, 67, 2288–2295 (2015).CrossRef
25.
go back to reference K. V. S. Thurston, B. Gludovatz, A. Hohenwarter, et al., “Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi,” Intermetallics, 88, 65–72 (2017).CrossRef K. V. S. Thurston, B. Gludovatz, A. Hohenwarter, et al., “Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi,” Intermetallics, 88, 65–72 (2017).CrossRef
26.
go back to reference M. A. Hemphill, T. Yuan, G. Y. Wang, et al., “Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys,” Acta Mater., 60, 5723–5734 (2012).CrossRef M. A. Hemphill, T. Yuan, G. Y. Wang, et al., “Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys,” Acta Mater., 60, 5723–5734 (2012).CrossRef
27.
go back to reference P. Y. Chen, C. Lee, S. Y. Wang, et al., “Fatigue behavior of high-entropy alloys: A review,” Sci. China Tech. Sci., 61, 168–178 (2018).CrossRef P. Y. Chen, C. Lee, S. Y. Wang, et al., “Fatigue behavior of high-entropy alloys: A review,” Sci. China Tech. Sci., 61, 168–178 (2018).CrossRef
28.
go back to reference S. Yang, Z. Liu, and J. Pi, “Microstructure and wear behavior of the AlCrFeCoNi high-entropy alloy fabricated by additive manufacturing,” Mater. Lett., 261, 127004 (2020). S. Yang, Z. Liu, and J. Pi, “Microstructure and wear behavior of the AlCrFeCoNi high-entropy alloy fabricated by additive manufacturing,” Mater. Lett., 261, 127004 (2020).
29.
go back to reference J. K. Xiao, H. Tan, Y. Q. Wu, et al., “Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying,” Surf. Coat. Technol., 385, 125430 (2020). J. K. Xiao, H. Tan, Y. Q. Wu, et al., “Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying,” Surf. Coat. Technol., 385, 125430 (2020).
30.
go back to reference Y. Zhang, S. G. Ma, and J. W. Qiao, “Morphology transition from dendrites to equiaxed grains for AlCoCrFeNi high-entropy alloys by copper mold casting and Bridgman solidification,” Metall. Mater. Trans. A, 43, 2625–2630 (2012).CrossRef Y. Zhang, S. G. Ma, and J. W. Qiao, “Morphology transition from dendrites to equiaxed grains for AlCoCrFeNi high-entropy alloys by copper mold casting and Bridgman solidification,” Metall. Mater. Trans. A, 43, 2625–2630 (2012).CrossRef
31.
go back to reference A. Ludwig, I. Wagner, J. Laakmann, and P. R. Sahm, “Undercooling of superalloy melts: basis of a new manufacturing technique for single-crystal turbine blades,” Mater. Sci. Eng. A, 178, 299–303 (1994).CrossRef A. Ludwig, I. Wagner, J. Laakmann, and P. R. Sahm, “Undercooling of superalloy melts: basis of a new manufacturing technique for single-crystal turbine blades,” Mater. Sci. Eng. A, 178, 299–303 (1994).CrossRef
32.
go back to reference X. Yang and Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys., 132, 233–238 (2012).CrossRef X. Yang and Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys., 132, 233–238 (2012).CrossRef
33.
go back to reference O. N. Senkov, J. M. Scott, S. V. Senkova, et al., “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” J. Alloy. Compd., 509, 6043–6048 (2011).CrossRef O. N. Senkov, J. M. Scott, S. V. Senkova, et al., “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” J. Alloy. Compd., 509, 6043–6048 (2011).CrossRef
34.
go back to reference X. Yang, Y. Zhang, and P. K. Liaw, “Microstructure and compressive properties o NbTiVTaAlx high entropy alloys,” Procedia Engineer., 36, 292–298 (2011).CrossRef X. Yang, Y. Zhang, and P. K. Liaw, “Microstructure and compressive properties o NbTiVTaAlx high entropy alloys,” Procedia Engineer., 36, 292–298 (2011).CrossRef
35.
go back to reference J. Joseph, N. Stanford, P. Hodgson, and D. M. Fabijanic, “Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy,” Scripta Mater., 129, 30–34 (2017).CrossRef J. Joseph, N. Stanford, P. Hodgson, and D. M. Fabijanic, “Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy,” Scripta Mater., 129, 30–34 (2017).CrossRef
36.
go back to reference D. H. Xiao, P. F. Zhou, W. Q. Wu, et al., “Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys,” Mater. Design, 116, 438–447 (2017). D. H. Xiao, P. F. Zhou, W. Q. Wu, et al., “Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys,” Mater. Design, 116, 438–447 (2017).
37.
go back to reference D. Hull, “Interpretation of river line patterns on indentation generated fracture surfaces with comments on the fractal characteristics,” J. Mater. Sci. Lett., 15, 651–653 (1996).CrossRef D. Hull, “Interpretation of river line patterns on indentation generated fracture surfaces with comments on the fractal characteristics,” J. Mater. Sci. Lett., 15, 651–653 (1996).CrossRef
38.
go back to reference J. T. Fan, L. J. Zhang, P. F. Yu, et al., “A novel high-entropy alloy with a dendrite-composite microstructure and remarkable compression performance,” Scripta Mater., 159, 18–23 (2019).CrossRef J. T. Fan, L. J. Zhang, P. F. Yu, et al., “A novel high-entropy alloy with a dendrite-composite microstructure and remarkable compression performance,” Scripta Mater., 159, 18–23 (2019).CrossRef
39.
go back to reference A. Rohatgi, K. S. Vecchio, and G. T. Gray, “The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery,” Metall. Mater. Trans. A, 32, 135–145 (2001).CrossRef A. Rohatgi, K. S. Vecchio, and G. T. Gray, “The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery,” Metall. Mater. Trans. A, 32, 135–145 (2001).CrossRef
40.
go back to reference N. Kumar, Q. Ying, X. Nie, et al., “High strain-rate compressive deformation behavior of the Al0.1CrFeCoNihigh entropy alloy,” Mater. Design, 86, 598–602 (2015).CrossRef N. Kumar, Q. Ying, X. Nie, et al., “High strain-rate compressive deformation behavior of the Al0.1CrFeCoNihigh entropy alloy,” Mater. Design, 86, 598–602 (2015).CrossRef
41.
go back to reference S. I. Rao, C. Varvenne, C. Woodward, et al., “Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy,” Acta Mater., 125, 311–320 (2017).CrossRef S. I. Rao, C. Varvenne, C. Woodward, et al., “Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy,” Acta Mater., 125, 311–320 (2017).CrossRef
42.
go back to reference S. P. Wang, E. Mac, and J. Xu, “Notch fracture toughness of body-centered-cubic (TiZrNbTa)–Mo high entropy alloys,” Intermetallics, 103, 78–87 (2018).CrossRef S. P. Wang, E. Mac, and J. Xu, “Notch fracture toughness of body-centered-cubic (TiZrNbTa)–Mo high entropy alloys,” Intermetallics, 103, 78–87 (2018).CrossRef
43.
go back to reference M. M. Khruschov, “Principles of abrasive wear,” Wear, 28, 69–88 (1974).CrossRef M. M. Khruschov, “Principles of abrasive wear,” Wear, 28, 69–88 (1974).CrossRef
Metadata
Title
Microstructural Verification, Mechanical and Wear Analysis of MoTaNbVxTi Refractory High-Entropy Alloys
Authors
A. Poulia
C. Mathiou
E. Georgatis
A. E. Karantzalis
Publication date
03-03-2022
Publisher
Springer US
Published in
Strength of Materials / Issue 6/2021
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00368-5

Other articles of this Issue 6/2021

Strength of Materials 6/2021 Go to the issue

Premium Partners