Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 4/2018

11-11-2017

Microstructure and optoelectronic properties of gallium–magnesium codoped zinc oxide thin films by magnetron sputtering technique

Authors: H. Kang, Z. Lu, Z. Zhong, T. Zhang

Published in: Journal of Materials Science: Materials in Electronics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The gallium–magnesium codoped zinc oxide (GMZO) thin films were deposited on glass substrates by radio frequency magnetron sputtering technique in an argon atmosphere. The influence of substrate temperature on the microstructure, morphology and optoelectronic properties of thin films was investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, four-point probe and spectrophotometry. It is found that all the deposited films have a hexagonal structure and a preferred orientation along the c-axis perpendicular to the substrate. As the substrate temperature increases, the dislocation density, lattice strain and electrical resistivity decrease initially and then increase, while the average crystallite size, average visible transmittance and figure of merit exhibit the reverse variation trend. The GMZO thin film deposited at the substrate temperature of 570 K possesses the best optoelectronic properties, with the largest average crystallite size of 52.05 nm, the lowest dislocation density of 3.69 × 1014 lines m− 2, the minimum lattice strain of 1.10 × 10− 3, the lowest electrical resistivity of 1.62 × 10− 3 Ω cm, the highest average visible transmittance of 88.63% and the maximum figure of merit of 5.11 × 103 Ω−1 cm− 1. The optical energy gaps of the films were evaluated by extrapolation method and observed to be in the range of 3.34–3.55 eV. Furthermore, the complex refractive index, the complex dielectric constant and the dissipation factor were determined by optical characterization methods, and the dispersion behaviour of refractive index was studied in terms of the single electronic oscillator model. The results show that the microstructure and optoelectronic properties of the GMZO thin films are dependent on substrate temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y.S. Song, N.J. Seong, K.J. Choi et al., Thin Solid Films 546(1), 271–274 (2013)CrossRef Y.S. Song, N.J. Seong, K.J. Choi et al., Thin Solid Films 546(1), 271–274 (2013)CrossRef
2.
go back to reference Z. Zhong, H. Kang, Z. Lu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 36(1), 64–70 (2017) Z. Zhong, H. Kang, Z. Lu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 36(1), 64–70 (2017)
3.
go back to reference N. Yamamoto, H. Makino, S. Osone et al., Thin Solid Films 520(12), 4131–4138 (2012)CrossRef N. Yamamoto, H. Makino, S. Osone et al., Thin Solid Films 520(12), 4131–4138 (2012)CrossRef
4.
go back to reference S. Chen, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 33(2), 57–62 (2014) S. Chen, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 33(2), 57–62 (2014)
5.
go back to reference J.-L. Wu, H.-Y. Lin, B.-Y. Su et al., J. Alloy. Compd. 592(1), 35–41 (2014)CrossRef J.-L. Wu, H.-Y. Lin, B.-Y. Su et al., J. Alloy. Compd. 592(1), 35–41 (2014)CrossRef
6.
7.
go back to reference H. Long, Z. Zhong, J. Gu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 36(1), 71–75 (2017) H. Long, Z. Zhong, J. Gu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 36(1), 71–75 (2017)
8.
go back to reference M. Hjiri, L.E. Mir, S.G. Leonardi et al., Sensor. Actuat. B 196(1), 413–420 (2014)CrossRef M. Hjiri, L.E. Mir, S.G. Leonardi et al., Sensor. Actuat. B 196(1), 413–420 (2014)CrossRef
9.
go back to reference J. Hu, Y. Zhou, H. Liu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 29(2), 6–10 (2010) J. Hu, Y. Zhou, H. Liu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 29(2), 6–10 (2010)
10.
go back to reference A. Barhoumi, G. Leroy, B. Duponchel et al., Superlattice. Microstruct. 82(1), 483–498 (2015)CrossRef A. Barhoumi, G. Leroy, B. Duponchel et al., Superlattice. Microstruct. 82(1), 483–498 (2015)CrossRef
11.
go back to reference Z. Zhong, J. Gu, X. He et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(4), 33–37 (2009) Z. Zhong, J. Gu, X. He et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(4), 33–37 (2009)
12.
go back to reference S. Suzuki, T. Miyata, M. Ishii et al., Thin Solid Films 434(1–2), 14–19 (2003)CrossRef S. Suzuki, T. Miyata, M. Ishii et al., Thin Solid Films 434(1–2), 14–19 (2003)CrossRef
13.
14.
go back to reference A. Suresh, P. Wellenius, A. Dhawan et al., Appl. Phys. Lett. 90(12), 123512–123514 (2007)CrossRef A. Suresh, P. Wellenius, A. Dhawan et al., Appl. Phys. Lett. 90(12), 123512–123514 (2007)CrossRef
15.
go back to reference R. Ebrahimifard, M.R. Golobostanfard, H. Abdizadeh, Appl. Surf. Sci. 290(1), 252–259 (2014)CrossRef R. Ebrahimifard, M.R. Golobostanfard, H. Abdizadeh, Appl. Surf. Sci. 290(1), 252–259 (2014)CrossRef
16.
go back to reference L. Zhang, J. Huang, J. Yang et al., Mater. Sci. Semicond. Process 42(Part 3), 277–282 (2016)CrossRef L. Zhang, J. Huang, J. Yang et al., Mater. Sci. Semicond. Process 42(Part 3), 277–282 (2016)CrossRef
17.
18.
go back to reference A. Davoodi, M. Tajally, O. Mirzaee et al., J. Alloy. Compd. 657(1), 296–301 (2016)CrossRef A. Davoodi, M. Tajally, O. Mirzaee et al., J. Alloy. Compd. 657(1), 296–301 (2016)CrossRef
19.
go back to reference Z. Zhong, T. Zhang, H. Wang, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 32(1), 58–64 (2013) Z. Zhong, T. Zhang, H. Wang, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 32(1), 58–64 (2013)
20.
go back to reference K. Zheng, L. Gu, D. Sun et al., Mater. Sci. Eng. B 166(1), 104–107 (2010)CrossRef K. Zheng, L. Gu, D. Sun et al., Mater. Sci. Eng. B 166(1), 104–107 (2010)CrossRef
21.
go back to reference T. Makino, K. Tamura, C.H. Chia et al., Phys. Stat. Sol. B 229(3), 853–857 (2002)CrossRef T. Makino, K. Tamura, C.H. Chia et al., Phys. Stat. Sol. B 229(3), 853–857 (2002)CrossRef
22.
go back to reference L.-H. Cheng, L.-Y. Zheng, L. Meng et al., Ceram. Int. 38(Supplement 1), s457–s461 (2012)CrossRef L.-H. Cheng, L.-Y. Zheng, L. Meng et al., Ceram. Int. 38(Supplement 1), s457–s461 (2012)CrossRef
23.
go back to reference G.G. Valle, P. Hammer, S.H. Pulcinelli et al., J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004)CrossRef G.G. Valle, P. Hammer, S.H. Pulcinelli et al., J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004)CrossRef
24.
go back to reference H. Mondragón-Suárez, A. Maldonado, L. de la Olvera et al., Appl. Surf. Sci. 193(1–4), 52–59 (2002)CrossRef H. Mondragón-Suárez, A. Maldonado, L. de la Olvera et al., Appl. Surf. Sci. 193(1–4), 52–59 (2002)CrossRef
25.
26.
go back to reference X. He, L. Xiong, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 30(2), 70–73 (2011) X. He, L. Xiong, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 30(2), 70–73 (2011)
27.
28.
go back to reference J.P. Kar, S. Kim, B. Shin et al., Solid-State Electron. 54(11), 1447–1450 (2010)CrossRef J.P. Kar, S. Kim, B. Shin et al., Solid-State Electron. 54(11), 1447–1450 (2010)CrossRef
29.
go back to reference A. Zhou, H. Liu, Y. Yuan, J. Vacuum Sci. Technol. 32(4), 974–977 (2012) A. Zhou, H. Liu, Y. Yuan, J. Vacuum Sci. Technol. 32(4), 974–977 (2012)
30.
go back to reference S. Chen, S. Wei, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 34(3), 72–78 (2015) S. Chen, S. Wei, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 34(3), 72–78 (2015)
31.
go back to reference J. Mass, P. Bhattacharya, R.S. Katiyar, Mater. Sci. Eng. B 103(1), 9–15 (2003)CrossRef J. Mass, P. Bhattacharya, R.S. Katiyar, Mater. Sci. Eng. B 103(1), 9–15 (2003)CrossRef
32.
go back to reference F. Sun, S. Hui, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(2), 10–13 (2009) F. Sun, S. Hui, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(2), 10–13 (2009)
33.
34.
go back to reference I. Chambouleyron, S.D. Ventura, E.G. Birgin et al., J. Appl. Phys. 92(6), 3093–3102 (2002)CrossRef I. Chambouleyron, S.D. Ventura, E.G. Birgin et al., J. Appl. Phys. 92(6), 3093–3102 (2002)CrossRef
35.
go back to reference E.G. Birgin, I. Chambouleyron, J.M. Martínez, J. Comput. Phys. 151(2), 862–880 (1999)CrossRef E.G. Birgin, I. Chambouleyron, J.M. Martínez, J. Comput. Phys. 151(2), 862–880 (1999)CrossRef
36.
go back to reference J. Chen, D. Chen, J. He et al., Appl. Surf. Sci. 255(23), 9413–9419 (2009)CrossRef J. Chen, D. Chen, J. He et al., Appl. Surf. Sci. 255(23), 9413–9419 (2009)CrossRef
37.
go back to reference Z.B. Ayadi, L.E. Mir, K. Djessas et al., Mater. Sci. Eng. C 28(5–6), 613–617 (2008)CrossRef Z.B. Ayadi, L.E. Mir, K. Djessas et al., Mater. Sci. Eng. C 28(5–6), 613–617 (2008)CrossRef
38.
go back to reference T. Huang, C. Li, J. Wu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 32(3), 5–7 (2013) T. Huang, C. Li, J. Wu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 32(3), 5–7 (2013)
39.
go back to reference S. Li, H. Yang, W. Wang et al., Mater. Rev. B 28(10), 6–10 (2014) S. Li, H. Yang, W. Wang et al., Mater. Rev. B 28(10), 6–10 (2014)
40.
go back to reference K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process 16(2), 337–343 (2013)CrossRef K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process 16(2), 337–343 (2013)CrossRef
41.
go back to reference J. Gu, Z. Lu, L. Long et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 35(2), 91–96 (2016) J. Gu, Z. Lu, L. Long et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 35(2), 91–96 (2016)
42.
go back to reference D. Briggs, M.P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. (Wiley, New York, 1983) D. Briggs, M.P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. (Wiley, New York, 1983)
44.
go back to reference C. Li, B. Yang, L. Qian et al., Optoelectron. Lett. 7(6), 0431–0436 (2011)CrossRef C. Li, B. Yang, L. Qian et al., Optoelectron. Lett. 7(6), 0431–0436 (2011)CrossRef
45.
go back to reference Z. Huang, X. Liu, L. Wu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 35(1), 17–22 (2016) Z. Huang, X. Liu, L. Wu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 35(1), 17–22 (2016)
46.
go back to reference P.P. Sahay, S. Tewari, R.K. Nath, Cryst. Res. Technol. 42(3), 723–729 (2007)CrossRef P.P. Sahay, S. Tewari, R.K. Nath, Cryst. Res. Technol. 42(3), 723–729 (2007)CrossRef
47.
go back to reference J. Gu, Z. Zhong, X. He et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(3), 30–33 (2009) J. Gu, Z. Zhong, X. He et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(3), 30–33 (2009)
48.
go back to reference Z.Z. You, G.J. Hua, Y.C. Yong et al., Cryst. Res. Technol. 47(10), 1039–1046 (2012)CrossRef Z.Z. You, G.J. Hua, Y.C. Yong et al., Cryst. Res. Technol. 47(10), 1039–1046 (2012)CrossRef
49.
go back to reference S. Chen, C. Lan, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 35(2), 97–102 (2016) S. Chen, C. Lan, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 35(2), 97–102 (2016)
50.
go back to reference L. de la Olvera, A. Maldonado, R. Asomoza et al., J. Mater. Sci.: Mater. Electron. 11(5), 383–387 (2000) L. de la Olvera, A. Maldonado, R. Asomoza et al., J. Mater. Sci.: Mater. Electron. 11(5), 383–387 (2000)
51.
go back to reference X.-Y. Li, H.-J. Li, Z.-J. Wang et al., Opt. Commun. 282(2), 247–252 (2009)CrossRef X.-Y. Li, H.-J. Li, Z.-J. Wang et al., Opt. Commun. 282(2), 247–252 (2009)CrossRef
52.
go back to reference C.Y. Tsay, C.W. Wu, C.M. Lei et al., Thin Solid Films 519(5), 1516–1520 (2010)CrossRef C.Y. Tsay, C.W. Wu, C.M. Lei et al., Thin Solid Films 519(5), 1516–1520 (2010)CrossRef
53.
go back to reference S.B. Chen, S. Wei, X. He et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(1), 43–46 (2009)CrossRef S.B. Chen, S. Wei, X. He et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 28(1), 43–46 (2009)CrossRef
54.
go back to reference S.R. Aghdaee, V. Soleimanian, B. Tayebi, Superlattice. Microstruct. 51(1), 149–162 (2012)CrossRef S.R. Aghdaee, V. Soleimanian, B. Tayebi, Superlattice. Microstruct. 51(1), 149–162 (2012)CrossRef
55.
go back to reference Q.-B. Ma, Z.-Z. Ye, H.-P. He et al., J. Cryst. Growth 304(1), 64–68 (2007)CrossRef Q.-B. Ma, Z.-Z. Ye, H.-P. He et al., J. Cryst. Growth 304(1), 64–68 (2007)CrossRef
56.
go back to reference Q.B. Ma, Z.Z. Ye, H.P. He et al., Mater. Sci. Semicond. Process 10(4–5), 167–172 (2007)CrossRef Q.B. Ma, Z.Z. Ye, H.P. He et al., Mater. Sci. Semicond. Process 10(4–5), 167–172 (2007)CrossRef
57.
58.
go back to reference J. Gu, L. Long, Z. Lu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 34(2), 68–73 (2015) J. Gu, L. Long, Z. Lu et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 34(2), 68–73 (2015)
60.
go back to reference Y. Yang, X.W. Sun, B.J. Chen et al., Thin Solid Films 510(1–2), 95–101 (2006)CrossRef Y. Yang, X.W. Sun, B.J. Chen et al., Thin Solid Films 510(1–2), 95–101 (2006)CrossRef
61.
go back to reference J. Gu, L. Long, C. Lan et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 33(4), 78–84 (2014) J. Gu, L. Long, C. Lan et al., J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 33(4), 78–84 (2014)
62.
go back to reference D.R. Sahu, J.L. Huang, Sol. Energy Mater. Sol. Cells 93(11), 1923–1927 (2009)CrossRef D.R. Sahu, J.L. Huang, Sol. Energy Mater. Sol. Cells 93(11), 1923–1927 (2009)CrossRef
63.
go back to reference S. Aksoy, Y. Caglar, S. Ilican et al., J. Alloy. Compd. 512(1), 171–178 (2012)CrossRef S. Aksoy, Y. Caglar, S. Ilican et al., J. Alloy. Compd. 512(1), 171–178 (2012)CrossRef
64.
65.
go back to reference J.I. Pankove, Optical Processes in Semiconductors. (Dover Publications, New York, 1975) J.I. Pankove, Optical Processes in Semiconductors. (Dover Publications, New York, 1975)
Metadata
Title
Microstructure and optoelectronic properties of gallium–magnesium codoped zinc oxide thin films by magnetron sputtering technique
Authors
H. Kang
Z. Lu
Z. Zhong
T. Zhang
Publication date
11-11-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 4/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-8217-3

Other articles of this Issue 4/2018

Journal of Materials Science: Materials in Electronics 4/2018 Go to the issue