Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 1/2017

21-11-2016

Microstructure and Properties of Plasma Source Nitrided AISI 316 Austenitic Stainless Steel

Authors: G. Y. Li, M. K. Lei

Published in: Journal of Materials Engineering and Performance | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plasma source nitriding is a relatively new nitriding technology which can overcome those inherent shortcomings associated with conventional direct current plasma nitriding technology such as the arcing surface damage, the edging effect and the hollow cathode effect. There is considerable study on the properties of nitrided samples for laboratorial scale plasma source nitriding system; however, little information has been reported on the industrial-scale plasma source nitriding system. In this work, AISI 316 austenitic stainless steel samples were nitrided by an industrial-scale plasma source nitriding system at various nitriding temperatures (350, 400, 450 and 500 °C) with a floating potential. A high-nitrogen face-centered-cubic phase (γN) formed on the surface of nitrided sample surface. As the nitriding temperature was increased, the γN phase layer thickness increased, varying from 1.5 μm for the lowest nitriding temperature of 350 °C, to 30 μm for the highest nitriding temperature of 500 °C. The maximum Vickers microhardness of the γN phase layer with a peak nitrogen concentration of 20 at.% is about HV 0.1 N 15.1 GPa at the nitriding temperature of 450 °C. The wear and corrosion experimental results demonstrated that the γN phase was formed on the surface of AISI 316 austenitic stainless steel by plasma source nitriding, which exhibits not only high wear resistance, but also good pitting corrosion resistance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Z.L. Zhang and T. Bell, Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel, Surf. Eng., 1985, 1, p 131–136CrossRef Z.L. Zhang and T. Bell, Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel, Surf. Eng., 1985, 1, p 131–136CrossRef
2.
go back to reference T. Bell, Y. Sun, and A. Suhadi, Environmental and Technical Aspects of Plasma Nitrocarburising, Vacuum, 2000, 59, p 14–23CrossRef T. Bell, Y. Sun, and A. Suhadi, Environmental and Technical Aspects of Plasma Nitrocarburising, Vacuum, 2000, 59, p 14–23CrossRef
3.
go back to reference M.K. Lei and Z.L. Zhang, Plasma Source Ion Nitriding: A New Low-Temperature, Low-Pressure Nitriding Approach, J. Vac. Sci. Technol., 1995, 13, p 2986–2990CrossRef M.K. Lei and Z.L. Zhang, Plasma Source Ion Nitriding: A New Low-Temperature, Low-Pressure Nitriding Approach, J. Vac. Sci. Technol., 1995, 13, p 2986–2990CrossRef
4.
go back to reference V. Singh, K. Marchev, C.V. Cooper, and E.I. Meletis, Intensified Plasma-Assisted Nitriding of AISI, 316L Stainless Steel, Surf. Coat. Technol., 2002, 160, p 249–258CrossRef V. Singh, K. Marchev, C.V. Cooper, and E.I. Meletis, Intensified Plasma-Assisted Nitriding of AISI, 316L Stainless Steel, Surf. Coat. Technol., 2002, 160, p 249–258CrossRef
5.
go back to reference C.X. Li, T. Bell, and H. Dong, A Study of Active Screen Plasma Nitriding, Surf. Eng., 2002, 18, p 174–181CrossRef C.X. Li, T. Bell, and H. Dong, A Study of Active Screen Plasma Nitriding, Surf. Eng., 2002, 18, p 174–181CrossRef
6.
go back to reference R. Hugon, G. Henrion, and M. Fabry, Diagnostics of a DC Pulsed-Plasma-Assisted Nitriding Process, Surf. Coat. Technol., 1993, 59, p 82–85CrossRef R. Hugon, G. Henrion, and M. Fabry, Diagnostics of a DC Pulsed-Plasma-Assisted Nitriding Process, Surf. Coat. Technol., 1993, 59, p 82–85CrossRef
7.
go back to reference G.Y. Li, Z.Y. Wang, and M.K. Lei, Transition of Wear Mechanisms of Plasma Source Nitrided AISI, 316 Austenitic Stainless Steel Against Ceramic Counterface, ASME J. Tribol., 2012, 134, p 011601–011609CrossRef G.Y. Li, Z.Y. Wang, and M.K. Lei, Transition of Wear Mechanisms of Plasma Source Nitrided AISI, 316 Austenitic Stainless Steel Against Ceramic Counterface, ASME J. Tribol., 2012, 134, p 011601–011609CrossRef
8.
go back to reference C. Alves, Jr., F.O. de Araujo, K.J.B. Ribeiro, J.A.P. da Costa, R.R.M. Sousa, and R.S. de Sousa, Use of Cathodic Cage in Plasma Nitriding, Surf. Coat. Technol., 2006, 201, p 2450–2454CrossRef C. Alves, Jr., F.O. de Araujo, K.J.B. Ribeiro, J.A.P. da Costa, R.R.M. Sousa, and R.S. de Sousa, Use of Cathodic Cage in Plasma Nitriding, Surf. Coat. Technol., 2006, 201, p 2450–2454CrossRef
9.
go back to reference C. Zhao, C.X. Li, H. Dong, and T. Bell, Study on the Active Screen Plasma Nitriding and Its Nitriding Mechanism, Surf. Coat. Technol., 2006, 201, p 2320–2325CrossRef C. Zhao, C.X. Li, H. Dong, and T. Bell, Study on the Active Screen Plasma Nitriding and Its Nitriding Mechanism, Surf. Coat. Technol., 2006, 201, p 2320–2325CrossRef
10.
go back to reference A. Nishimoto, K. Nagatsuka, R. Narita, H. Nii, and K. Akamatsu, Effect of the Distance Between Screen and Sample on Active Screen Plasma Nitriding Properties, Surf. Coat. Technol., 2010, 205, p 365–368CrossRef A. Nishimoto, K. Nagatsuka, R. Narita, H. Nii, and K. Akamatsu, Effect of the Distance Between Screen and Sample on Active Screen Plasma Nitriding Properties, Surf. Coat. Technol., 2010, 205, p 365–368CrossRef
11.
go back to reference J. Georges and D. Cleugh, Active Screen Plasma Nitriding, Stainless Steel 2000: Thermochemical Surface Engineering of Stainless Steel, T. Bell and K. Akamatsu, Ed., Maney Publishing, Leeds, 2001, p 377–387 J. Georges and D. Cleugh, Active Screen Plasma Nitriding, Stainless Steel 2000: Thermochemical Surface Engineering of Stainless Steel, T. Bell and K. Akamatsu, Ed., Maney Publishing, Leeds, 2001, p 377–387
12.
go back to reference Y. Sun, T. Bell, Z. Kolosvary, and J. Flis, The Response of Austenitic Stainless Steels to Low-Temperature Plasma Nitriding, Heat Treat. Met., 1999, 26, p 9–16 Y. Sun, T. Bell, Z. Kolosvary, and J. Flis, The Response of Austenitic Stainless Steels to Low-Temperature Plasma Nitriding, Heat Treat. Met., 1999, 26, p 9–16
13.
go back to reference N. Yasumaru, Low-Temperature Ion Nitriding of Austenitic Stainless Steels, Mater. Trans., 1998, 39, p 1046–1052CrossRef N. Yasumaru, Low-Temperature Ion Nitriding of Austenitic Stainless Steels, Mater. Trans., 1998, 39, p 1046–1052CrossRef
14.
go back to reference M.K. Lei and Z.L. Zhang, Microstructure and Corrosion Resistance of Plasma Source Ion Nitrided Austenitic Stainless Steel, J. Vac. Sci. Technol. A, 1997, 15, p 421–427CrossRef M.K. Lei and Z.L. Zhang, Microstructure and Corrosion Resistance of Plasma Source Ion Nitrided Austenitic Stainless Steel, J. Vac. Sci. Technol. A, 1997, 15, p 421–427CrossRef
15.
go back to reference Y. Sun, X.Y. Li, and T. Bell, X-ray Diffraction Characterisation of Low Temperature Plasma Nitrided Austenitic Stainless Steels, J. Mater. Sci., 1998, 34, p 4793–4802CrossRef Y. Sun, X.Y. Li, and T. Bell, X-ray Diffraction Characterisation of Low Temperature Plasma Nitrided Austenitic Stainless Steels, J. Mater. Sci., 1998, 34, p 4793–4802CrossRef
16.
go back to reference M.K. Lei and J. Liang, X-ray Diffraction of High Nitrogen Face Centred Cubic Phase Formed on Nitrogen Modified Austenitic Stainless Steel, Surf. Eng., 2010, 26, p 305–311CrossRef M.K. Lei and J. Liang, X-ray Diffraction of High Nitrogen Face Centred Cubic Phase Formed on Nitrogen Modified Austenitic Stainless Steel, Surf. Eng., 2010, 26, p 305–311CrossRef
17.
go back to reference J. Oddershede, T.L. Christiansen, and M.A.J. Somers, Extended X-ray Absorption Fine Structure Investigation of Nitrogen Stabilized Expanded Austenite, Scripta Mater., 2004, 62, p 290–293CrossRef J. Oddershede, T.L. Christiansen, and M.A.J. Somers, Extended X-ray Absorption Fine Structure Investigation of Nitrogen Stabilized Expanded Austenite, Scripta Mater., 2004, 62, p 290–293CrossRef
18.
go back to reference M.K. Lei, Phase Transformations in Plasma Source Ion Nitrided Austenitic Stainless Steel at Low Temperature, J. Mater. Sci., 1999, 34, p 5975–5982CrossRef M.K. Lei, Phase Transformations in Plasma Source Ion Nitrided Austenitic Stainless Steel at Low Temperature, J. Mater. Sci., 1999, 34, p 5975–5982CrossRef
19.
go back to reference C.X. Li and T. Bell, Sliding Wear Properties of Active Screen Plasma Nitrided 316 Austenitic Stainless Steel, Wear, 2004, 256, p 1144–1152CrossRef C.X. Li and T. Bell, Sliding Wear Properties of Active Screen Plasma Nitrided 316 Austenitic Stainless Steel, Wear, 2004, 256, p 1144–1152CrossRef
20.
go back to reference M.K. Lei and X.M. Zhu, Plasma-Based Low-Energy Ion Implantation Of Austenitic Stainless Steel for Improvement in Wear and Corrosion Resistance, Surf. Coat. Technol., 2005, 193, p 22–28CrossRef M.K. Lei and X.M. Zhu, Plasma-Based Low-Energy Ion Implantation Of Austenitic Stainless Steel for Improvement in Wear and Corrosion Resistance, Surf. Coat. Technol., 2005, 193, p 22–28CrossRef
21.
go back to reference M.K. Lei, Q. Zhou, Y.X. Ou, T.K. Song, and Y. Guo, Tribological Behaviour of Plasma Based Low Energy Nitrogen Ion Implanted AISI 316 Austenitic Stainless Steel Against Same Stainless Steel Counterface, Surf. Eng., 2010, 26, p 277–283CrossRef M.K. Lei, Q. Zhou, Y.X. Ou, T.K. Song, and Y. Guo, Tribological Behaviour of Plasma Based Low Energy Nitrogen Ion Implanted AISI 316 Austenitic Stainless Steel Against Same Stainless Steel Counterface, Surf. Eng., 2010, 26, p 277–283CrossRef
22.
go back to reference M.K. Lei and X.M. Zhu, Role of Nitrogen in Pitting Corrosion Resistance of a High-Nitrogen Face-Centered-Cubic Phase Formed on Austenitic Stainless Steel, J. Electrochem. Soc., 2005, 152, p B291–B295CrossRef M.K. Lei and X.M. Zhu, Role of Nitrogen in Pitting Corrosion Resistance of a High-Nitrogen Face-Centered-Cubic Phase Formed on Austenitic Stainless Steel, J. Electrochem. Soc., 2005, 152, p B291–B295CrossRef
23.
go back to reference M.K. Lei and X.M. Zhu, Comparative Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted Austenitic Stainless Steel, Surf. Coat. Technol., 2007, 201, p 6865–6868CrossRef M.K. Lei and X.M. Zhu, Comparative Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted Austenitic Stainless Steel, Surf. Coat. Technol., 2007, 201, p 6865–6868CrossRef
Metadata
Title
Microstructure and Properties of Plasma Source Nitrided AISI 316 Austenitic Stainless Steel
Authors
G. Y. Li
M. K. Lei
Publication date
21-11-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 1/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2435-3

Other articles of this Issue 1/2017

Journal of Materials Engineering and Performance 1/2017 Go to the issue

Premium Partners