Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 4/2014

01-04-2014

Microstructure and Properties of SAE 2205 Stainless Steel After Salt Bath Nitrocarburizing at 450 °C

Authors: Jing Yan, Jun Wang, Yuanhua Lin, Tan Gu, Dezhi Zeng, Runbo Huang, Xiong Ji, Hongyuan Fan

Published in: Journal of Materials Engineering and Performance | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nitrocarburizing of the type SAE 2205 duplex stainless steel was conducted at 450 °C, using a type of salt bath chemical surface treatment, and the microstructure and properties of the nitrided surface were systematically researched. Experimental results revealed that a modified layer transformed on the surface of samples with the thickness ranging from 3 to 28 μm changed with the treatment time. After 2205 duplex stainless steel was subjected to salt bath nitriding at 450 °C for time less than 8 h, the preexisting ferrite zone in the surface transformed into austenite by active nitrogen diffusion. The main phase of the nitrided layer was the expanded austenite. When the treatment time was extended to 16 h, the preexisting ferrite zone in the expanded austenite was decomposed and transformed partially into ε-nitride precipitate. When the treatment time extended to 40 h, the preexisting ferrite zone in the expanded austenite was transformed into ε-nitride and CrN precipitate. Further, a large amount of nitride precipitated from preexisting austenite zone. The nitrided layer depth thickness changed intensively with the increasing nitriding time. The growth of the nitride layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. The salt bath nitriding can effectively improve the surface hardness. The maximum values measured from the treated surface are observed to be approximately 1400 HV0.1 after 8 h, which is about 3.5 times as hard as the untreated material (396 HV0.1). Low-temperature nitriding can improve the erosion/corrosion resistance. After nitriding for 4 h, the sample has the best corrosion resistance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Blawert, A. Weisheit, B.L. Mordike, and F.M. Knoop, Plasma Immersion Ion Implantation of Stainless Steel: Austenitic Stainless Steel in Comparison to Austenitic-Ferritic Stainless Steel, Surf. Coat. Technol., 1996, 85, p 15–27CrossRef C. Blawert, A. Weisheit, B.L. Mordike, and F.M. Knoop, Plasma Immersion Ion Implantation of Stainless Steel: Austenitic Stainless Steel in Comparison to Austenitic-Ferritic Stainless Steel, Surf. Coat. Technol., 1996, 85, p 15–27CrossRef
2.
go back to reference L.H. Chiu, Y.Y. Su, F.S. Chen, and H. Chang, Microstructure and Properties of Active Screen Plasma Nitrided Duplex Stainless Steel, Mater. Manuf. Process., 2010, 25, p 316–323CrossRef L.H. Chiu, Y.Y. Su, F.S. Chen, and H. Chang, Microstructure and Properties of Active Screen Plasma Nitrided Duplex Stainless Steel, Mater. Manuf. Process., 2010, 25, p 316–323CrossRef
3.
go back to reference T.L. Christiansen and M.A.J. Somers, Controlled Dissolution of Colossal Quantities of Nitrogen in Stainless Steel, Metall. Mater. Trans. A, 2006, 37, p 675CrossRef T.L. Christiansen and M.A.J. Somers, Controlled Dissolution of Colossal Quantities of Nitrogen in Stainless Steel, Metall. Mater. Trans. A, 2006, 37, p 675CrossRef
4.
go back to reference Y. Lin, J. Lu, L. Wang, T. Xu, and Q. Xue, Surface Nanocrystallization by Surface Mechanical Attrition Treatment and its Effect on Structure and Properties of Plasma Nitrided AISI, 321 Stainless Steel, Acta Mater., 2006, 54, p 5599–5605CrossRef Y. Lin, J. Lu, L. Wang, T. Xu, and Q. Xue, Surface Nanocrystallization by Surface Mechanical Attrition Treatment and its Effect on Structure and Properties of Plasma Nitrided AISI, 321 Stainless Steel, Acta Mater., 2006, 54, p 5599–5605CrossRef
5.
go back to reference T.S. Hummelshøj, T.L. Christiansen, and M.A.J. Somers, Lattice expansion of carbon-stabilized expanded austenite, Scripta Mater., 2010, 63, p 761–763CrossRef T.S. Hummelshøj, T.L. Christiansen, and M.A.J. Somers, Lattice expansion of carbon-stabilized expanded austenite, Scripta Mater., 2010, 63, p 761–763CrossRef
6.
go back to reference L. Wang, X. Bin, Y. Zhiwei, and S. Yaqin, The Wear and Corrosion Properties of Stainless Steel Nitrided by Low-Pressure Plasma-Arc Source Ion Nitriding at Low Temperatures, Surf. Coat. Technol., 2000, 130, p 304–308CrossRef L. Wang, X. Bin, Y. Zhiwei, and S. Yaqin, The Wear and Corrosion Properties of Stainless Steel Nitrided by Low-Pressure Plasma-Arc Source Ion Nitriding at Low Temperatures, Surf. Coat. Technol., 2000, 130, p 304–308CrossRef
7.
go back to reference L. Wang, S. Ji, and J. Sun, Effect of Nitriding Time on the Nitrided Layer of AISI, 304 Austenitic Stainless Steel, Surf. Coat. Technol., 2006, 200, p 5067–5070CrossRef L. Wang, S. Ji, and J. Sun, Effect of Nitriding Time on the Nitrided Layer of AISI, 304 Austenitic Stainless Steel, Surf. Coat. Technol., 2006, 200, p 5067–5070CrossRef
8.
go back to reference R.B. Frandsen, T. Christiansen, and M.A.J. Somers, Simultaneous Surface Engineering and Bulk Hardening of Precipitation Hardening Stainless Steel, Surf. Coat. Technol., 2006, 200, p 5160CrossRef R.B. Frandsen, T. Christiansen, and M.A.J. Somers, Simultaneous Surface Engineering and Bulk Hardening of Precipitation Hardening Stainless Steel, Surf. Coat. Technol., 2006, 200, p 5160CrossRef
9.
go back to reference S. Sienz, S. Mandl, and B. Rauschenbach, In Situ Stress Measurements During Low-Energy Nitriding of Stainless Steel, Surf. Coat. Technol., 2002, 156, p 185–189CrossRef S. Sienz, S. Mandl, and B. Rauschenbach, In Situ Stress Measurements During Low-Energy Nitriding of Stainless Steel, Surf. Coat. Technol., 2002, 156, p 185–189CrossRef
10.
go back to reference A.S. Hamdy, B. Marx, and D. Butt, Corrosion Behavior of Nitride Layer Obtained on AISI, 316L Stainless Steel via Simple Direct Nitridation Route at Low Temperature, Mater. Chem. Phys., 2011, 126, p 507–514CrossRef A.S. Hamdy, B. Marx, and D. Butt, Corrosion Behavior of Nitride Layer Obtained on AISI, 316L Stainless Steel via Simple Direct Nitridation Route at Low Temperature, Mater. Chem. Phys., 2011, 126, p 507–514CrossRef
11.
go back to reference Y. Sun and E. Haruman, Effect of Carbon Addition on Low-Temperature Plasma Nitriding Characteristics of Austenitic Stainless Steel, Vacuum, 2006, 81, p 114–119CrossRef Y. Sun and E. Haruman, Effect of Carbon Addition on Low-Temperature Plasma Nitriding Characteristics of Austenitic Stainless Steel, Vacuum, 2006, 81, p 114–119CrossRef
12.
go back to reference H. Tsujimura, T. Goto, and Y. Ito, Surface Nitriding of SUS 304 Austenitic Stainless Steel by a Molten Salt Electrochemical Process, J. Electrochem. Soc., 2004, 151D, p 67–71CrossRef H. Tsujimura, T. Goto, and Y. Ito, Surface Nitriding of SUS 304 Austenitic Stainless Steel by a Molten Salt Electrochemical Process, J. Electrochem. Soc., 2004, 151D, p 67–71CrossRef
13.
go back to reference H. Tsujimura, T. Goto, and Y. Ito, Electrochemical formation and control of chromium nitride films in molten LiCl–KCl–Li3N systems, Electrochimica. Acta, 2002, 47, p 2725–2731CrossRef H. Tsujimura, T. Goto, and Y. Ito, Electrochemical formation and control of chromium nitride films in molten LiCl–KCl–Li3N systems, Electrochimica. Acta, 2002, 47, p 2725–2731CrossRef
14.
go back to reference K. Funatani, Low-Temperature Salt Bath Nitriding of Steels, Met. Sci. Heat Treat., 2004, 46, p 277–281CrossRef K. Funatani, Low-Temperature Salt Bath Nitriding of Steels, Met. Sci. Heat Treat., 2004, 46, p 277–281CrossRef
15.
go back to reference J.W. Zhang, L.T. Lu, K. Shiozawa, W.N. Zhou, and W.H. Zhang, Effect of Nitrocarburizing and Post-Oxidation on Fatigue Behavior of 35CrMo Alloy Steel in Very High Cycle Fatigue Regime, Int. J. Fatigue, 2011, 33, p 880–886CrossRef J.W. Zhang, L.T. Lu, K. Shiozawa, W.N. Zhou, and W.H. Zhang, Effect of Nitrocarburizing and Post-Oxidation on Fatigue Behavior of 35CrMo Alloy Steel in Very High Cycle Fatigue Regime, Int. J. Fatigue, 2011, 33, p 880–886CrossRef
16.
go back to reference P. Jacquet, J.B. Coudert, and P. Lourdin, How Different Steel Grades React to a Salt Bath Nitrocarburizing and Post-Oxidation Process: Influence of Alloying Elements, Surf. Coat. Technol., 2011, 205, p 4064–4067CrossRef P. Jacquet, J.B. Coudert, and P. Lourdin, How Different Steel Grades React to a Salt Bath Nitrocarburizing and Post-Oxidation Process: Influence of Alloying Elements, Surf. Coat. Technol., 2011, 205, p 4064–4067CrossRef
17.
go back to reference Y.Z. Shen, K.H. Oh, and D.N. Lee, Nitriding of Steel in Potassium Nitrate Salt Bath, Scripta Mater., 2005, 53, p 1345–1349CrossRef Y.Z. Shen, K.H. Oh, and D.N. Lee, Nitriding of Steel in Potassium Nitrate Salt Bath, Scripta Mater., 2005, 53, p 1345–1349CrossRef
18.
go back to reference H. Tsujimura, T. Goto, and Y. Ito, Electrochemical Surface Nitriding of Pure Iron by Molten Salt Electrochemical Process, J. Alloys Compd., 2004, 376, p 246–250CrossRef H. Tsujimura, T. Goto, and Y. Ito, Electrochemical Surface Nitriding of Pure Iron by Molten Salt Electrochemical Process, J. Alloys Compd., 2004, 376, p 246–250CrossRef
19.
go back to reference H.Y. Li, D.F. Luo, C.F. Yeung, and K.H. Lau, Microstructural Studies of QPQ Complex Salt Bath Heat-Treated Steels, J. Mater. Process. Technol., 1997, 69, p 45CrossRef H.Y. Li, D.F. Luo, C.F. Yeung, and K.H. Lau, Microstructural Studies of QPQ Complex Salt Bath Heat-Treated Steels, J. Mater. Process. Technol., 1997, 69, p 45CrossRef
20.
go back to reference C.F. Yeung, K.H. Lau, H.Y. Li, and D.F. Luo, Advanced QPC Complex Salt Bath Heat Treatment, J. Mater. Process. Technol., 1997, 66, p 249CrossRef C.F. Yeung, K.H. Lau, H.Y. Li, and D.F. Luo, Advanced QPC Complex Salt Bath Heat Treatment, J. Mater. Process. Technol., 1997, 66, p 249CrossRef
21.
go back to reference G.-J. Li, Q. Peng, J. Wang, C. Li, Y. Wang, J. Gao, S.-Y. Chen, and B.-L. Shen, Surface Microstructure of 316L Austenitic Stainless Steel by the Salt Bath nitrocarburizing and Post-Oxidation Process Known as QPQ, Surf. Coat. Technol., 2008, 202, p 2865–2870CrossRef G.-J. Li, Q. Peng, J. Wang, C. Li, Y. Wang, J. Gao, S.-Y. Chen, and B.-L. Shen, Surface Microstructure of 316L Austenitic Stainless Steel by the Salt Bath nitrocarburizing and Post-Oxidation Process Known as QPQ, Surf. Coat. Technol., 2008, 202, p 2865–2870CrossRef
22.
go back to reference C.E. Foerster, F.C. Serbena, S.L.R. da Silva, C.M. Lepienski, CJdeM Siqueira, and M. Ueda, Mechanical and Tribological Properties of AISI, 304 Stainless Steel Nitrided by Glow Discharge Compared to Ion Implantation and Plasma Immersion Ion Implantation, Nucl. Instr. Meth. B, 2007, 257, p 732CrossRef C.E. Foerster, F.C. Serbena, S.L.R. da Silva, C.M. Lepienski, CJdeM Siqueira, and M. Ueda, Mechanical and Tribological Properties of AISI, 304 Stainless Steel Nitrided by Glow Discharge Compared to Ion Implantation and Plasma Immersion Ion Implantation, Nucl. Instr. Meth. B, 2007, 257, p 732CrossRef
23.
go back to reference L.C. Gontijo, R. Machado, E.J. Miola, L.C. Casteletti, N.G. Alcantara, and P.A.P. Nascente, Study of the S Phase Formed on Plasma-Nitrided AISI, 316L Stainless Steel, Mater. Sci. Eng. A, 2006, 431, p 315–321CrossRef L.C. Gontijo, R. Machado, E.J. Miola, L.C. Casteletti, N.G. Alcantara, and P.A.P. Nascente, Study of the S Phase Formed on Plasma-Nitrided AISI, 316L Stainless Steel, Mater. Sci. Eng. A, 2006, 431, p 315–321CrossRef
24.
go back to reference J. Wang, Y. Lin, J. Yan, D. Zen, Q. Zhang, R. Huang, and H. Fan, Influence of Time on the Microstructure of AISI, 321 Austenitic Stainless Steel in Salt Bath Nitriding, Surf. Coat. Technol., 2012, 206, p 3399–3404CrossRef J. Wang, Y. Lin, J. Yan, D. Zen, Q. Zhang, R. Huang, and H. Fan, Influence of Time on the Microstructure of AISI, 321 Austenitic Stainless Steel in Salt Bath Nitriding, Surf. Coat. Technol., 2012, 206, p 3399–3404CrossRef
25.
go back to reference J. Wang, Y. Lin, J. Yan, D. Zen, R. Huang, and H. Zejing, Modification of AISI, 304 Stainless Steel Surface by the Low Temperature Complex Salt Bath Nitriding at 430°C, ISIJ Int., 2012, 52, p 1128–1133 J. Wang, Y. Lin, J. Yan, D. Zen, R. Huang, and H. Zejing, Modification of AISI, 304 Stainless Steel Surface by the Low Temperature Complex Salt Bath Nitriding at 430°C, ISIJ Int., 2012, 52, p 1128–1133
26.
go back to reference D. Lopez, C. Sanchez, and A. Toro, Corrosion-Erosion Behavior of TiN-Coated Stainless Steels in Aqueous Slurries, Wear, 2005, 258, p 684–692CrossRef D. Lopez, C. Sanchez, and A. Toro, Corrosion-Erosion Behavior of TiN-Coated Stainless Steels in Aqueous Slurries, Wear, 2005, 258, p 684–692CrossRef
27.
go back to reference S.D. Chyou and H.C. Shih, The Effect of Nitrogen on the Corrosion of Plasma-Nitrided 4140 Steel, Corrosion, 1991, 47(1), p 31–34CrossRef S.D. Chyou and H.C. Shih, The Effect of Nitrogen on the Corrosion of Plasma-Nitrided 4140 Steel, Corrosion, 1991, 47(1), p 31–34CrossRef
28.
go back to reference C.X. Li and T. Bell, Corrosion Properties of Active Screen Plasma Nitrided 316 Austenitic Stainless Steel, Corros. Sci., 2004, 46, p 1527–1547CrossRef C.X. Li and T. Bell, Corrosion Properties of Active Screen Plasma Nitrided 316 Austenitic Stainless Steel, Corros. Sci., 2004, 46, p 1527–1547CrossRef
29.
go back to reference E. Menthe and K.-T. Rie, Further Investigation of the Structure and Properties of Austenitic Stainless Steel After Plasma Nitriding, Surf. Coat. Technol., 1999, 116–119, p 199CrossRef E. Menthe and K.-T. Rie, Further Investigation of the Structure and Properties of Austenitic Stainless Steel After Plasma Nitriding, Surf. Coat. Technol., 1999, 116–119, p 199CrossRef
30.
go back to reference K.C. Chen, J.L. He, W.H. Huang, and T.T. Yeh, Study on the Solid–Liquid Erosion Resistance of Ion-Nitrided Metal, Wear, 2002, 252, p 580–585CrossRef K.C. Chen, J.L. He, W.H. Huang, and T.T. Yeh, Study on the Solid–Liquid Erosion Resistance of Ion-Nitrided Metal, Wear, 2002, 252, p 580–585CrossRef
31.
go back to reference H. Dong, S-Phase Surface Engineering of Fe–Cr, Co–Cr and Ni–Cr Alloys, Int. Mater. Rev., 2010, 55(2), p 65–98CrossRef H. Dong, S-Phase Surface Engineering of Fe–Cr, Co–Cr and Ni–Cr Alloys, Int. Mater. Rev., 2010, 55(2), p 65–98CrossRef
Metadata
Title
Microstructure and Properties of SAE 2205 Stainless Steel After Salt Bath Nitrocarburizing at 450 °C
Authors
Jing Yan
Jun Wang
Yuanhua Lin
Tan Gu
Dezhi Zeng
Runbo Huang
Xiong Ji
Hongyuan Fan
Publication date
01-04-2014
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 4/2014
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-0922-y

Other articles of this Issue 4/2014

Journal of Materials Engineering and Performance 4/2014 Go to the issue

Premium Partners