Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2014

01-10-2014

Microstructure Evolution and Tensile Properties of Laser-TIG Hybrid Welds of Ti2AlNb-Based Titanium Aluminide

Authors: Kezhao Zhang, Ming Liu, Zhenglong Lei, Yanbin Chen

Published in: Journal of Materials Engineering and Performance | Issue 10/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microstructure of laser-tungsten inert gas hybrid welded Ti2AlNb-based joints and their tensile properties at room temperature were investigated in this paper. The results showed that good-quality joints could be obtained by hybrid welding process. The microstructure evolution was identified by means of optical microscopy, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The fusion zone mainly consisted of B2 phase due to the rapid cooling rate, as well as high Nb content. The phase compositions of the heat-affected zone were varied with different thermal cycles during the welding process. Tensile tests at room temperature showed that fracture tended to occur in the fusion zone, and the tensile strength and elongation were 950 MPa and 4.3%, respectively. The fracture mode was quasi-cleavage based on the observation of the fracture morphology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Banerjee, A. Gogia, T. Nandi, and V. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta Metall., 1988, 36, p 871–882CrossRef D. Banerjee, A. Gogia, T. Nandi, and V. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta Metall., 1988, 36, p 871–882CrossRef
2.
go back to reference J. Kumpfert, Intermetallic Alloys Based on Orthorhombic Titanium Aluminide, Adv. Eng. Mater., 2001, 3, p 851–864CrossRef J. Kumpfert, Intermetallic Alloys Based on Orthorhombic Titanium Aluminide, Adv. Eng. Mater., 2001, 3, p 851–864CrossRef
3.
go back to reference F. Tang, T. Awane, and M. Hagiwara, Effect of Compositional Modification on Young’s Modulus of Ti2AlNb-Based Alloy, Scripta Mater., 2002, 46, p 143–147CrossRef F. Tang, T. Awane, and M. Hagiwara, Effect of Compositional Modification on Young’s Modulus of Ti2AlNb-Based Alloy, Scripta Mater., 2002, 46, p 143–147CrossRef
4.
go back to reference F. Tang, S. Emura, and M. Hagiwara, Tensile Properties of Tungsten-Modified Orthorhombic Ti-22Al-20Nb-2W Alloy, Scripta Mater., 2001, 44, p 671–676CrossRef F. Tang, S. Emura, and M. Hagiwara, Tensile Properties of Tungsten-Modified Orthorhombic Ti-22Al-20Nb-2W Alloy, Scripta Mater., 2001, 44, p 671–676CrossRef
5.
go back to reference J.P. Quast and C.J. Boehlert, Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-24Al-17Nb-0.66Mo (Atomic Percent) and Ti-24Al-17Nb-2.3Mo (Atomic Percent) Alloys, Metall. Mater. Trans. A, 2007, 38, p 529–536CrossRef J.P. Quast and C.J. Boehlert, Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-24Al-17Nb-0.66Mo (Atomic Percent) and Ti-24Al-17Nb-2.3Mo (Atomic Percent) Alloys, Metall. Mater. Trans. A, 2007, 38, p 529–536CrossRef
6.
go back to reference F. Tang, S. Nakazawa, and M. Hagiwara, The Effect of Quaternary Additions on the Microstructures and Mechanical Properties of Orthorhombic Ti2AlNb-Based Alloys, Mater. Sci. Eng. A, 2002, 329, p 492–498CrossRef F. Tang, S. Nakazawa, and M. Hagiwara, The Effect of Quaternary Additions on the Microstructures and Mechanical Properties of Orthorhombic Ti2AlNb-Based Alloys, Mater. Sci. Eng. A, 2002, 329, p 492–498CrossRef
7.
go back to reference M. Hagiwara, S. Emura, A. Araoka, B.-O. Kong, and F. Tang, Enhanced Mechanical Properties of Orthorhombic Ti2AlNb-Based Intermetallic Alloy, Met. Mater. Int., 2003, 9, p 265–272CrossRef M. Hagiwara, S. Emura, A. Araoka, B.-O. Kong, and F. Tang, Enhanced Mechanical Properties of Orthorhombic Ti2AlNb-Based Intermetallic Alloy, Met. Mater. Int., 2003, 9, p 265–272CrossRef
8.
go back to reference L.A. Bendersky and W.J. Boettinger, Investigation of B2 and Related Phases in the Ti-Al-Nb Ternary System, MRS Proceedings, Cambridge University Press, Cambridge, 1988. L.A. Bendersky and W.J. Boettinger, Investigation of B2 and Related Phases in the Ti-Al-Nb Ternary System, MRS Proceedings, Cambridge University Press, Cambridge, 1988.
9.
go back to reference D. Li, S.I. Wright, and C.J. Boehlert, The Grain Boundary Character Distribution of a Fully-Orthorhombic Ti-25Al-24Nb(at.%) Alloy, Scripta Mater., 2004, 51, p 545–550CrossRef D. Li, S.I. Wright, and C.J. Boehlert, The Grain Boundary Character Distribution of a Fully-Orthorhombic Ti-25Al-24Nb(at.%) Alloy, Scripta Mater., 2004, 51, p 545–550CrossRef
10.
go back to reference S.R. Dey, S. Suwas, J.J. Fundenberger, and R.K. Ray, Evolution of Crystallographic Texture and Microstructure in the Orthorhombic Phase of a Two-Phase Alloy Ti-22Al-25Nb, Intermetallics, 2009, 17, p 622–633CrossRef S.R. Dey, S. Suwas, J.J. Fundenberger, and R.K. Ray, Evolution of Crystallographic Texture and Microstructure in the Orthorhombic Phase of a Two-Phase Alloy Ti-22Al-25Nb, Intermetallics, 2009, 17, p 622–633CrossRef
11.
go back to reference C. Boehlert, The Phase Evolution and Microstructural Stability of An Orthorhombic Ti-23Al-27Nb Alloy, J. Phase Equilib., 1999, 20, p 101–108CrossRef C. Boehlert, The Phase Evolution and Microstructural Stability of An Orthorhombic Ti-23Al-27Nb Alloy, J. Phase Equilib., 1999, 20, p 101–108CrossRef
12.
go back to reference A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet, Microstructure and Mechanical Properties of Orthorhombic Alloys in the Ti-Al-Nb System, Intermetallics, 1998, 6, p 741–748CrossRef A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet, Microstructure and Mechanical Properties of Orthorhombic Alloys in the Ti-Al-Nb System, Intermetallics, 1998, 6, p 741–748CrossRef
13.
go back to reference C. Boehlert and I.I.I. Part, The Tensile Behavior of Ti-Al-Nb O+ BCC Orthorhombic Alloys, Metall. Mater. Trans. A, 2001, 32, p 1977–1988CrossRef C. Boehlert and I.I.I. Part, The Tensile Behavior of Ti-Al-Nb O+ BCC Orthorhombic Alloys, Metall. Mater. Trans. A, 2001, 32, p 1977–1988CrossRef
14.
go back to reference J. Peng, Y. Mao, S. Li, and X. Sun, Microstructure Controlling by Heat Treatment and Complex Processing for Ti2AlNb Based Alloys, Mater. Sci. Eng. A, 2001, 299, p 75–80CrossRef J. Peng, Y. Mao, S. Li, and X. Sun, Microstructure Controlling by Heat Treatment and Complex Processing for Ti2AlNb Based Alloys, Mater. Sci. Eng. A, 2001, 299, p 75–80CrossRef
15.
go back to reference G. Çam and M. Koçak, Progress in Joining of Advanced Materials, Int. Mater. Rev., 1998, 43, p 1–44CrossRef G. Çam and M. Koçak, Progress in Joining of Advanced Materials, Int. Mater. Rev., 1998, 43, p 1–44CrossRef
16.
go back to reference J. dos Santos, G. Çam, F. Torster, A. Insfran, S. Riekehr, V. Ventzke, and M. Koçak, Properties of Power Beam Welded Steels, Al- and Ti-Alloys: Significance of Strength Mismatch, Weld. World, 2000, 44, p 42–64 J. dos Santos, G. Çam, F. Torster, A. Insfran, S. Riekehr, V. Ventzke, and M. Koçak, Properties of Power Beam Welded Steels, Al- and Ti-Alloys: Significance of Strength Mismatch, Weld. World, 2000, 44, p 42–64
17.
go back to reference P. Threadgill, The Prospects for Joining Titanium Aluminides, Mater. Sci. Eng. A, 1995, 192, p 640–646CrossRef P. Threadgill, The Prospects for Joining Titanium Aluminides, Mater. Sci. Eng. A, 1995, 192, p 640–646CrossRef
18.
go back to reference G. Martin, C. Albright, and T. Jones, An Evaluation of CO2 Laser Beam Welding on a Ti3Al-Nb Alloy, Weld. J., 1995, 74, p 77–82 G. Martin, C. Albright, and T. Jones, An Evaluation of CO2 Laser Beam Welding on a Ti3Al-Nb Alloy, Weld. J., 1995, 74, p 77–82
19.
go back to reference A. Wu, G. Zou, J. Ren, H. Zhang, G. Wang, X. Liu, and M. Xie, Microstructures and Mechanical Properties of Ti-24Al-17Nb (at.%) Laser Beam Welding Joints, Intermetallics, 2002, 10, p 647–652CrossRef A. Wu, G. Zou, J. Ren, H. Zhang, G. Wang, X. Liu, and M. Xie, Microstructures and Mechanical Properties of Ti-24Al-17Nb (at.%) Laser Beam Welding Joints, Intermetallics, 2002, 10, p 647–652CrossRef
20.
go back to reference F. Jicai, W. Huiqiang, H. Jingshan, and Z. Bingang, Microstructure Evolution of Electron Beam Welded Ti3Al-Nb Joint, Mater. Charact., 2005, 54, p 99–105CrossRef F. Jicai, W. Huiqiang, H. Jingshan, and Z. Bingang, Microstructure Evolution of Electron Beam Welded Ti3Al-Nb Joint, Mater. Charact., 2005, 54, p 99–105CrossRef
21.
go back to reference H.-Q. Wu, J.-C. Feng, J.-S. He, and B.-G. Zhang, Microstructure Evolution of High Nb Containing Ti3Al Based Alloy Electron Beam Welding Joints, Chin. J. Nonferrous Met., 2004, 14, p 1313–1317 H.-Q. Wu, J.-C. Feng, J.-S. He, and B.-G. Zhang, Microstructure Evolution of High Nb Containing Ti3Al Based Alloy Electron Beam Welding Joints, Chin. J. Nonferrous Met., 2004, 14, p 1313–1317
22.
go back to reference S. David, J. Horton, G. Goodwin, D. Phillips, and R. Reed, Weldability and Microstructure of a Titanium Aluminide, Weld. J., 1990, 69, p 133–140 S. David, J. Horton, G. Goodwin, D. Phillips, and R. Reed, Weldability and Microstructure of a Titanium Aluminide, Weld. J., 1990, 69, p 133–140
23.
go back to reference M. Moradi, M. Ghoreishi, J. Frostevarg, and A.F.H. Kaplan, An Investigation on Stability of Laser Hybrid Arc Welding, Opt. Laser. Eng., 2013, 51, p 481–487CrossRef M. Moradi, M. Ghoreishi, J. Frostevarg, and A.F.H. Kaplan, An Investigation on Stability of Laser Hybrid Arc Welding, Opt. Laser. Eng., 2013, 51, p 481–487CrossRef
24.
go back to reference G. Ming, Z. Xiaoyan, and H. Qianwu, Effects of Gas Shielding Parameters on Weld Penetration of CO2 Laser-TIG Hybrid Welding, J. Mater. Process. Technol., 2007, 184, p 177–183CrossRef G. Ming, Z. Xiaoyan, and H. Qianwu, Effects of Gas Shielding Parameters on Weld Penetration of CO2 Laser-TIG Hybrid Welding, J. Mater. Process. Technol., 2007, 184, p 177–183CrossRef
25.
go back to reference L. Mallory, W. Baeslack, and D. Phillips, Evolution of the Weld Heat-Affected Zone Microstructure in a Ti-48Al-2Cr-2Nb Gamma Titanium Aluminide, J. Mater. Sci. Lett., 1994, 13, p 1061–1065 L. Mallory, W. Baeslack, and D. Phillips, Evolution of the Weld Heat-Affected Zone Microstructure in a Ti-48Al-2Cr-2Nb Gamma Titanium Aluminide, J. Mater. Sci. Lett., 1994, 13, p 1061–1065
26.
go back to reference W. Piekarska and M. Kubiak, Modeling of Temperature Field and Fluid Flow in Hybrid Welding Process, Arch. Foundry Eng., 2009, 9, p 199–202 W. Piekarska and M. Kubiak, Modeling of Temperature Field and Fluid Flow in Hybrid Welding Process, Arch. Foundry Eng., 2009, 9, p 199–202
27.
go back to reference G. Madhusudhan Reddy, T. Mohandas, and K. Chandreshekar, Observations on Welding of α2 + O + β Titanium Aluminide, Sci. Technol. Weld. Join., 2001, 6, p 300–304CrossRef G. Madhusudhan Reddy, T. Mohandas, and K. Chandreshekar, Observations on Welding of α2 + O + β Titanium Aluminide, Sci. Technol. Weld. Join., 2001, 6, p 300–304CrossRef
28.
go back to reference C. Boehlert, B. Majumdar, V. Seetharaman, and D. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O+ BCC Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30, p 2305–2323CrossRef C. Boehlert, B. Majumdar, V. Seetharaman, and D. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O+ BCC Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30, p 2305–2323CrossRef
29.
go back to reference J. Kumpfert and W. Kaysser, Orthorhombic Titanium Aluminides: Phases, Phase Transformations and Microstructure Evolution, Z. Metall., 2001, 92, p 128–134 J. Kumpfert and W. Kaysser, Orthorhombic Titanium Aluminides: Phases, Phase Transformations and Microstructure Evolution, Z. Metall., 2001, 92, p 128–134
30.
go back to reference W. Baeslack, T. Mascorella, and T. Kelly, Weldability of a Titanium Aluminide, Weld. J., 1989, 68, p 483 W. Baeslack, T. Mascorella, and T. Kelly, Weldability of a Titanium Aluminide, Weld. J., 1989, 68, p 483
31.
go back to reference B. Ribic, R. Rai, T. Palmer, and T. DebRoy, Arc-Laser Interactions and Heat Transfer and Fluid Flow in Hybrid Welding, Trends in Welding Research: Proceedings of the 7th International Conference, ASM International, Materials Park, 2009, p 313–320 B. Ribic, R. Rai, T. Palmer, and T. DebRoy, Arc-Laser Interactions and Heat Transfer and Fluid Flow in Hybrid Welding, Trends in Welding Research: Proceedings of the 7th International Conference, ASM International, Materials Park, 2009, p 313–320
32.
go back to reference V. Raghavan, Al-Nb-Ti (Aluminum-Niobium-Titanium), J. Phase. Equilib. Diffus., 2005, 26, p 360–368CrossRef V. Raghavan, Al-Nb-Ti (Aluminum-Niobium-Titanium), J. Phase. Equilib. Diffus., 2005, 26, p 360–368CrossRef
33.
go back to reference C. Cowen and C. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti-21Al-29Nb (at.%) Orthorhombic+ B2 Alloy, Intermetallics, 2006, 14, p 412–422CrossRef C. Cowen and C. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti-21Al-29Nb (at.%) Orthorhombic+ B2 Alloy, Intermetallics, 2006, 14, p 412–422CrossRef
Metadata
Title
Microstructure Evolution and Tensile Properties of Laser-TIG Hybrid Welds of Ti2AlNb-Based Titanium Aluminide
Authors
Kezhao Zhang
Ming Liu
Zhenglong Lei
Yanbin Chen
Publication date
01-10-2014
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2014
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1153-y

Other articles of this Issue 10/2014

Journal of Materials Engineering and Performance 10/2014 Go to the issue

Premium Partners